首页> 外文期刊>Biomedical signal processing and control >Few-shot learning of Parkinson's disease speech data with optimal convolution sparse kernel transfer learning
【24h】

Few-shot learning of Parkinson's disease speech data with optimal convolution sparse kernel transfer learning

机译:具有最佳卷积稀疏内核转移学习的帕金森病语音数据的几次拍摄学习

获取原文
获取原文并翻译 | 示例

摘要

The classification of Parkinson's disease speech data is useful and popular. However, the existing public Parkinson's disease(PD) speech datasets are characterized by small sample sizes, and the possible reason is that labeled speech data from PD patients are scarce. To solve the few-shot problem, a PD classification algorithm based on sparse kernel transfer learning combined with simultaneous sample and feature selection is proposed in this paper. Sparse kernel transfer learning is used to extract the effective structural information of PD speech features from public datasets as source domain data, and the fast alternating direction method of multipliers (ADMM) iteration is improved to enhance the information extraction performance. First, features are extracted from a public speech dataset to construct a feature dataset as the source domain. Then, the PD target domain, including the training and test datasets, is encoded by convolution sparse coding, which can extract more indepth information. Next, simultaneous optimization is implemented. To further improve the classification performance, a convolution kernel optimization mechanism is designed. In the experimental section, two representative PD speech datasets are used for verification; the first dataset is a frequently used public dataset, and the second dataset is constructed by the authors. Over ten relevant algorithms are compared with the proposed method. The results show that the proposed algorithm achieves obvious improvements in terms of classification accuracy. The study also found that the improvements are considerable when compared with nontransfer learning approaches, demonstrating that the proposed transfer learning approach is more effective and has an acceptable time cost.
机译:帕金森病语音数据的分类是有用和流行的。然而,现有的公共帕金森病(PD)语音数据集的特点是小样本尺寸,并且可能的原因是来自PD患者的标记语音数据是稀缺的。为了解决少量镜头问题,本文提出了一种基于稀疏核传输学习的PD分类算法与同时采样和特征选择相结合。稀疏内核传输学习用于将PD语音特征的有效结构信息从公共数据集提取为源域数据,并且改进了乘法器(ADMM)迭代的快速交替方向方法以增强信息提取性能。首先,从公共语音数据集中提取功能,以构造一个要素数据集作为源域。然后,通过卷积稀疏编码编码,包括训练和测试数据集的PD目标域,其可以提取更多的下限信息。接下来,实现同时优化。为了进一步提高分类性能,设计了一种卷积内核优化机制。在实验部分中,两个代表性的PD语音数据集用于验证;第一个数据集是常用的公共数据集,第二个数据集由作者构建。将十个相关算法与所提出的方法进行比较。结果表明,该算法在分类准确性方面实现了明显的改进。该研究还发现,与非传输学习方法相比,改善是相当大的,表明建议的转移学习方法更有效并且具有可接受的时间成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号