首页> 外文期刊>Biomedical signal processing and control >Local discriminant preservation projection embedded ensemble learning based dimensionality reduction of speech data of Parkinson's disease
【24h】

Local discriminant preservation projection embedded ensemble learning based dimensionality reduction of speech data of Parkinson's disease

机译:基于帕金森病的语音数据的局部判别保存投影嵌入式集合学习的维度减少

获取原文
获取原文并翻译 | 示例

摘要

Speech has been widely used in the diagnosis of Parkinson's disease (PD). However, the collected PD speech data has the characteristics of high data redundancy, high aliasing and small sample size, which brings great challenges to PD speech recognition. Dimensionality reduction (DR) can effectively solve these problems. However, the existing methods for PD speech DR methods ignore the high noise and high aliasing characteristics of PD speech. In order to alleviate these problems, a weighted local discriminant preservation projection embedded ensemble algorithm is proposed to detect PD. The proposed algorithm preferentially reduces the intra-class variance of PD speech samples, and simultaneously increases the inter-class variance and maintains the neighborhood structure of PD speech samples. In addition, the idea of ensemble learning is introduced to increase the stability of the model. Two widely used PD speech datasets for diagnosis and a treated Parkinson patient speech dataset collected by ourselves were used to verify the effectiveness of the proposed algorithm. Compared with existing PD speech DR methods, the proposed algorithm always has the highest Accuracy, Precision, Recall and G-mean in PD speech datasets. This shows that the proposed algorithm not only has excellent performance in classification of PD speech data, but also can handle imbalanced PD samples well. Even compared with the state-of-the-art DR methods, the proposed method was improved by at least 4.34 %. In addition, the proposed algorithm not only achieved the highest detection accuracy, but also achieved the highest AUC in most case.
机译:言语已被广泛用于帕金森病(PD)的诊断。然而,收集的PD语音数据具有高数据冗余,高别名和小样本大小的特征,这给PD语音识别带来了巨大的挑战。减少维度(DR)可以有效解决这些问题。然而,PD语音DR方法的现有方法忽略了PD语音的高噪声和高次叠加特性。为了缓解这些问题,提出了一种加权本地判别保存投影嵌入式集合算法来检测PD。所提出的算法优先降低PD语音样本的级别方差,并且同时增加阶级方差并保持PD语音样本的邻域结构。此外,还引入了集合学习的思想来提高模型的稳定性。用于诊断的两个广泛使用的PD语音数据集和由我们自己收集的处理过处的帕金森患者语音数据集用于验证所提出的算法的有效性。与现有的PD语音DR方法相比,所提出的算法总是具有PD语音数据集中的最高精度,精度,召回和G均值。这表明所提出的算法在PD语音数据的分类中不仅具有出色的性能,而且还可以处理不平衡的PD样品。甚至与最先进的DR方法相比,所提出的方法得到至少4.34%。此外,所提出的算法不仅达到了最高的检测精度,而且在大多数情况下也实现了最高的AUC。

著录项

  • 来源
    《Biomedical signal processing and control》 |2021年第1期|102165.1-102165.13|共13页
  • 作者单位

    Chongqing Univ Sch Microelect & Commun Engn Chongqing Peoples R China|Chongqing Univ Chongqing Key Lab Space Informat Network & Intell Chongqing 400044 Peoples R China;

    Chongqing Univ Sch Microelect & Commun Engn Chongqing Peoples R China|Chongqing Univ Chongqing Key Lab Space Informat Network & Intell Chongqing 400044 Peoples R China;

    Chongqing Univ Sch Microelect & Commun Engn Chongqing Peoples R China|Chongqing Univ Chongqing Key Lab Space Informat Network & Intell Chongqing 400044 Peoples R China;

    Chongqing Univ Sch Microelect & Commun Engn Chongqing Peoples R China|Chongqing Univ Chongqing Key Lab Space Informat Network & Intell Chongqing 400044 Peoples R China;

    Army Med Univ Southwest Hosp Dept Neurol Chongqing 400038 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Parkinson's disease; Data processing; Dimensionality reduction; Preservation projection; Embedded ensemble;

    机译:帕金森病;数据处理;减少维度;保存投影;嵌入式集合;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号