首页> 外文期刊>Journal of ambient intelligence and humanized computing >Improved local fisher discriminant analysis based dimensionality reduction for cancer disease prediction
【24h】

Improved local fisher discriminant analysis based dimensionality reduction for cancer disease prediction

机译:改进的当地渔业判别分析基于癌症预测的维度降低

获取原文
获取原文并翻译 | 示例

摘要

A good dimensional reduction technique is needed to apply and improve the effectiveness of dimensionality reduction for medical data. High-dimensional data brings great challenges in terms of computational complexity and classification efficiency. It is necessary to compress effectively from high dimensional space to low dimensional space to design a learning curve with good performance. Therefore, dimensional reduction is necessary to study and understand the mechanism of the practical problems of medical data. In this paper, a hybrid local fisher discriminant analysis (HLFDA) method is proposed for the dimension reduction of the medical data. LFDA is a localized variant of Fisher discriminant analysis and it is popular for supervised dimensionality reduction method. The proposed HLFDA is a combination of Locality-preserving projection and LFDA. After the dimensionality reduction process, the data are given to the Type2fuzzy neural network classifier to classify a given data as normal or abnormal. The paper focused on improving performance in terms of prediction accuracy. Three types of UCI cancer dataset is used for analyzing the performance of the proposed method.
机译:需要一种良好的尺寸减少技术来应用和提高医疗数据的维度减少的有效性。高维数据在计算复杂性和分类效率方面带来了极大的挑战。有必要从高维空间压缩到低维空间,以设计具有良好性能的学习曲线。因此,尺寸减少是必要的学习和理解医学数据的实际问题的机制。本文提出了一种杂交本地Fisher判别分析(HLFDA)方法,用于减少医疗数据的维度。 LFDA是Fisher判别分析的局部变体,它是受监督维度减少方法的流行。所提出的HLFDA是定位保存投影和LFDA的组合。在维度降低过程之后,将数据给出给Type2Fuzzy神经网络分类器,以将给定数据分类为正常或异常。本文集中于提高预测准确性的性能。三种类型的UCI癌症数据集用于分析所提出的方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号