首页> 外文期刊>Machine Learning >Semi-supervised local Fisher discriminant analysis for dimensionality reduction
【24h】

Semi-supervised local Fisher discriminant analysis for dimensionality reduction

机译:半监督的局部Fisher判别分析以减少维数

获取原文
获取原文并翻译 | 示例

摘要

When only a small number of labeled samples are available, supervised dimensionality reduction methods tend to perform poorly because of overfitting. In such cases, unlabeled samples could be useful in improving the performance. In this paper, we propose a semi-supervised dimensionality reduction method which preserves the global structure of unlabeled samples in addition to separating labeled samples in different classes from each other. The proposed method, which we call SEmi-supervised Local Fisher discriminant analysis (SELF), has an analytic form of the globally optimal solution and it can be computed based on eigen-decomposition. We show the usefulness of SELF through experiments with benchmark and real-world document classification datasets.
机译:当只有少量标记的样本可用时,由于过度拟合,监督的降维方法往往效果不佳。在这种情况下,未标记的样品可能有助于改善性能。在本文中,我们提出了一种半监督降维方法,该方法除了将不同类别的标记样本彼此分离之外,还保留了未标记样本的全局结构。所提出的方法称为半监督局部Fisher判别分析(SELF),具有全局最优解的解析形式,可以基于特征分解来计算。我们通过使用基准和真实文档分类数据集进行实验来展示SELF的有用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号