首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Learning Linear Discriminant Projections for Dimensionality Reduction of Image Descriptors
【24h】

Learning Linear Discriminant Projections for Dimensionality Reduction of Image Descriptors

机译:学习线性判别投影以减少图像描述符的维数

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present Linear Discriminant Projections (LDP) for reducing dimensionality and improving discriminability of local image descriptors. We place LDP into the context of state-of-the-art discriminant projections and analyze its properties. LDP requires a large set of training data with point-to-point correspondence ground truth. We demonstrate that training data produced by a simulation of image transformations leads to nearly the same results as the real data with correspondence ground truth. This makes it possible to apply LDP as well as other discriminant projection approaches to the problems where the correspondence ground truth is not available, such as image categorization. We perform an extensive experimental evaluation on standard data sets in the context of image matching and categorization. We demonstrate that LDP enables significant dimensionality reduction of local descriptors and performance increases in different applications. The results improve upon the state-of-the-art recognition performance with simultaneous dimensionality reduction from 128 to 30.
机译:在本文中,我们提出了线性判别投影(LDP),以减少维数并提高局部图像描述符的可判别性。我们将LDP置于最新判别式投影的上下文中,并分析其特性。 LDP需要大量具有点对点对应地面真实性的训练数据。我们证明了通过模拟图像变换产生的训练数据所产生的结果几乎与具有对应地面真理的真实数据所获得的结果相同。这样就可以将LDP以及其他判别式投影方法应用于对应地面真相不可用的问题,例如图像分类。我们在图像匹配和分类的背景下对标准数据集进行了广泛的实验评估。我们证明了LDP可以显着降低局部描述符的维数,并提高不同应用程序的性能。结果提高了最先进的识别性能,同时维数从128减少到30。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号