首页> 外文期刊>Communications in Statistics >Two-step variable selection in partially linear additive models with time series data
【24h】

Two-step variable selection in partially linear additive models with time series data

机译:具有时间序列数据的部分线性加法模型中的两步变量选择

获取原文
获取原文并翻译 | 示例

摘要

Lots of semi-parametric and nonparametric models are used to fit nonlinear time series data. They include partially linear time series models, nonparametric additive models, and semi-parametric single index models. In this article, we focus on fitting time series data by partially linear additive model. Combining the orthogonal series approximation and the adaptive sparse group LASSO regularization, we select the important variables between and within the groups simultaneously. Specially, we propose a two-step algorithm to obtain the grouped sparse estimators. Numerical studies show that the proposed method outperforms LASSO method in both fitting and forecasting. An empirical analysis is used to illustrate the methodology.
机译:许多半参数和非参数模型用于拟合非线性时间序列数据。它们包括部分线性时间序列模型,非参数加性模型和半参数单指数模型。在本文中,我们重点介绍通过部分线性加法模型拟合时间序列数据。结合正交级数逼近和自适应稀疏组LASSO正则化,我们同时选择组之间和组内的重要变量。特别地,我们提出了两步算法来获得分组的稀疏估计量。数值研究表明,该方法在拟合和预测方面均优于LASSO方法。实证分析用于说明该方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号