首页> 外文期刊>Mathematical Problems in Engineering >Automatic Variable Selection for Partially Linear Functional Additive Model and Its Application to the Tecator Data Set
【24h】

Automatic Variable Selection for Partially Linear Functional Additive Model and Its Application to the Tecator Data Set

机译:部分线性功能加性模型的自动变量选择及其在检测器数据集中的应用

获取原文
获取原文并翻译 | 示例

摘要

We introduce a new partially linear functional additive model, and we consider the problem of variable selection for this model. Based on the functional principal components method and the centered spline basis function approximation, a new variable selection procedure is proposed by using the smooth-threshold estimating equation (SEE). The proposed procedure automatically eliminates inactive predictors by setting the corresponding parameters to be zero and simultaneously estimates the nonzero regression coefficients by solving the SEE. The approach avoids the convex optimization problem, and it is flexible and easy to implement. We establish the asymptotic properties of the resulting estimators under some regularity conditions. We apply the proposed procedure to analyze a real data set: the Tecator data set.
机译:我们介绍了一个新的部分线性功能加性模型,并考虑了该模型的变量选择问题。基于功能主成分法和中心样条基函数逼近,提出了一种新的变量选择方法,即平滑阈值估计方程(SEE)。所提出的过程通过将相应参数设置为零来自动消除不活跃的预测变量,并通过求解SEE同时估计非零回归系数。该方法避免了凸优化问题,并且灵活且易于实现。我们建立了在某些规则性条件下所得估计量的渐近性质。我们将所提出的程序应用于分析实际数据集:Tecator数据集。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2018年第10期|5683539.1-5683539.9|共9页
  • 作者单位

    Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China;

    Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号