首页> 外文期刊>Communications in Numerical Methods in Engineering >Population-based priors in cardiac model personalisation for consistent parameter estimation in heterogeneous databases
【24h】

Population-based priors in cardiac model personalisation for consistent parameter estimation in heterogeneous databases

机译:基于人口的基于心脏模型个性化的前沿,在异构数据库中的一致参数估计

获取原文
获取原文并翻译 | 示例

摘要

Personalised cardiac models are a virtual representation of the patient heart, with parameter values for which the simulation fits the available clinical measurements. Models usually have a large number of parameters while the available data for a given patient are typically limited to a small set of measurements; thus, the parameters cannot be estimated uniquely. This is a practical obstacle for clinical applications, where accurate parameter values can be important. Here, we explore an original approach based on an algorithm called Iteratively Updated Priors (IUP), in which we perform successive personalisations of a full database through maximum a posteriori (MAP) estimation, where the prior probability at an iteration is set from the distribution of personalised parameters in the database at the previous iteration. At the convergence of the algorithm, estimated parameters of the population lie on a linear subspace of reduced (and possibly sufficient) dimension in which for each case of the database, there is a (possibly unique) parameter value for which the simulation fits the measurements. We first show how this property can help the modeller select a relevant parameter subspace for personalisation. In addition, since the resulting priors in this subspace represent the population statistics in this subspace, they can be used to perform consistent parameter estimation for cases where measurements are possibly different or missing in the database, which we illustrate with the personalisation of a heterogeneous database of 811 cases.
机译:个性化的心脏模型是患者心脏的虚拟表示,其中模拟适合可用临床测量的参数值。模型通常具有大量参数,而给定患者的可用数据通常限于一小集的测量值;因此,不能唯一地估计参数。这是临床应用的实用障碍,在那里准确的参数值可能很重要。在这里,我们探讨一种原始方法,基于称为迭代更新的前瞻(IUP)的算法,其中我们通过最大的后验(MAP)估计来执行完整数据库的连续个性化,其中迭代的现有概率是从分布中设置的在前一个迭代的数据库中的个性化参数。在算法的收敛性下,群体的估计参数位于减少(且可能是足够的)维度的线性子空间,其中对于每个数据库的每种情况,存在(可能是唯一的)参数值,其中模拟适合测量值。我们首先展示此属性如何帮助Modeller选择相关的参数子空间以进行个性化。此外,由于该子空间中的结果代表该子空间中的群体统计数据,因此可以使用它们来执行一致的参数估计,以便在数据库中测量可能不同或丢失的情况下,我们用异构数据库的个性化来说明811例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号