首页> 外文期刊>Communications in Numerical Methods in Engineering >Population-based priors in cardiac model personalisation for consistent parameter estimation in heterogeneous databases
【24h】

Population-based priors in cardiac model personalisation for consistent parameter estimation in heterogeneous databases

机译:心脏模型个性化中基于种群的先验,用于异构数据库中的一致参数估计

获取原文
获取原文并翻译 | 示例

摘要

Personalised cardiac models are a virtual representation of the patient heart, with parameter values for which the simulation fits the available clinical measurements. Models usually have a large number of parameters while the available data for a given patient are typically limited to a small set of measurements; thus, the parameters cannot be estimated uniquely. This is a practical obstacle for clinical applications, where accurate parameter values can be important. Here, we explore an original approach based on an algorithm called Iteratively Updated Priors (IUP), in which we perform successive personalisations of a full database through maximum a posteriori (MAP) estimation, where the prior probability at an iteration is set from the distribution of personalised parameters in the database at the previous iteration. At the convergence of the algorithm, estimated parameters of the population lie on a linear subspace of reduced (and possibly sufficient) dimension in which for each case of the database, there is a (possibly unique) parameter value for which the simulation fits the measurements. We first show how this property can help the modeller select a relevant parameter subspace for personalisation. In addition, since the resulting priors in this subspace represent the population statistics in this subspace, they can be used to perform consistent parameter estimation for cases where measurements are possibly different or missing in the database, which we illustrate with the personalisation of a heterogeneous database of 811 cases.
机译:个性化的心脏模型是患者心脏的虚拟表示,其参数值使模拟适合可用的临床测量。模型通常具有大量参数,而给定患者的可用数据通常仅限于一小组测量。因此,不能唯一地估计参数。这对于临床应用是一个实际的障碍,在临床应用中,准确的参数值可能很重要。在这里,我们探索一种基于称为迭代更新优先级(IUP)的算法的原始方法,在该算法中,我们通过最大后验(MAP)估计对完整数据库进行连续的个性化设置,其中,迭代的先验概率是从分布中设置的上一次迭代时数据库中个性化参数的设置。在算法收敛时,总体的估计参数位于维数减小(可能足够)的线性子空间上,在该子空间中,对于数据库的每种情况,都有一个(可能唯一的)参数值,模拟值适合该参数值。我们首先展示该属性如何帮助建模者选择相关的参数子空间进行个性化设置。另外,由于此子空间中的结果先验值表示该子空间中的总体统计信息,因此对于在数据库中测量值可能不同或缺失的情况下,它们可以用于执行一致的参数估计,我们将通过异构数据库的个性化进行说明811例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号