首页> 外文期刊>Communications in numerical methods in engineering >Diffuse Interface Method For Simulation Of The Chemical Vapor Deposition Of Pyrolytic Carbon: Aspects Of The Mathematical Formulation
【24h】

Diffuse Interface Method For Simulation Of The Chemical Vapor Deposition Of Pyrolytic Carbon: Aspects Of The Mathematical Formulation

机译:模拟热解碳化学气相沉积的扩散界面方法:数学公式的各个方面

获取原文
获取原文并翻译 | 示例

摘要

The present work is inspired by Anderson et al. (Phys. D Nonlinear Phenom. 2000; 135(1-2): 175-194) and Noll and falls in the conceptual line of the Ginzburg-Landau class of first-order phase-transition models based on the concept of phase-field parameter. Trying to keep the exposition as much general as possible, we develop below a thermodynamically consistent rationalization of the physical process of (anisotropic) deposition of pyrolytic carbon from a gas phase. The derivation line we follow is well established in the field of the modern continuum physics. From the covariance of the first principle of thermodynamics, the second Newton's law and the Liouville's theorem with respect to the one-dimensional Lie groups of transformations, the balance laws for the temperature, linear momentum and density are formulated. This system of partial differential equations is comprehended further by the constitutive laws for the phase field, the stress, and the heat and entropy fluxes obtained in a form consistent with the Clausius-Duhem understanding of the second law. The result referred to as a local, strongly coupled initial boundary value problem of chemical vapor deposition (IBVP-CVD) constitutes the general mathematical description of the CVD process. The weak form of isotropic IBVP-CVD is then derived and discretized by means of the discontinuous Galerkin method. At the end of the paper, we also derive the weak formulations for the local lifting operators that provide the stabilization mechanism for the discontinuous Galerkin discretization scheme.
机译:目前的工作是受Anderson等人启发的。 (Phys D D Nonlinear Phenom。2000; 135(1-2):175-194)和Noll and属于基于相场概念的一阶相变模型的Ginzburg-Landau类的概念线参数。为了使展览尽可能地笼统,我们在热力学上从气相沉积(各向异性)热解碳的物理过程的合理化原理下进行了发展。我们遵循的推导线在现代连续体物理学领域已经确立。从热力学第一原理,第二牛顿定律和一维李厄变换的Liouville定理的协方差,可以得出温度,线性动量和密度的平衡定律。偏微分方程组的系统还由相场,应力,热和熵通量的本构定律进一步理解,这些定律以与克劳修斯·杜海姆对第二定律的理解相一致的方式获得。该结果称为化学气相沉积的局部强耦合初始边界值问题(IBVP-CVD),构成了CVD工艺的一般数学描述。然后,通过不连续Galerkin方法导出弱形式的各向同性IBVP-CVD并离散化。在本文的最后,我们还为当地起重算子导出了弱公式,这些公式为不连续的Galerkin离散化方案提供了稳定机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号