首页> 中国专利> 界面层互扩散优化时效成形/扩散复合组织的相场模拟方法

界面层互扩散优化时效成形/扩散复合组织的相场模拟方法

摘要

一种界面层互扩散优化时效成形/扩散复合组织的相场模拟方法,该方法针对时效成形/扩散复合界面层组织取向粗化、沿晶无沉淀带等界面不连续性现象,分析取向性决定的沉淀相取向粗化形貌、取向演化机制、沿晶无沉淀带形成规律,探明界面层应力对原子穿越结合面扩散的促进作用,得出界面层上应力作用引发的沉淀行为变化,提出消除界面层不连续沉淀相的原理,优化组织。本发明用于消除时效成形/扩散复合过程应力诱发界面层动态不连续沉淀相,以获得弥散分布、交叉排列的动态沉淀组织,提升材料性能。

著录项

  • 公开/公告号CN104461691A

    专利类型发明专利

  • 公开/公告日2015-03-25

    原文格式PDF

  • 申请/专利权人 西北工业大学;

    申请/专利号CN201410744317.6

  • 发明设计人 张静;陈铮;王永欣;卢艳丽;

    申请日2014-12-09

  • 分类号G06F9/455;

  • 代理机构西安亿诺专利代理有限公司;

  • 代理人韩素兰

  • 地址 710000 陕西省西安市碑林区友谊西路127号西北工业大学材料学院

  • 入库时间 2023-12-18 08:05:40

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-11-22

    未缴年费专利权终止 IPC(主分类):G06F9/455 授权公告日:20171121 终止日期:20181209 申请日:20141209

    专利权的终止

  • 2017-11-21

    授权

    授权

  • 2015-04-22

    实质审查的生效 IPC(主分类):G06F9/455 申请日:20141209

    实质审查的生效

  • 2015-03-25

    公开

    公开

说明书

技术领域

本发明涉及塑性成形领域的计算机模拟和组织优化,具体涉及界面层互扩散优化时效成形/扩散复合组织的相场模拟方法。

技术背景

时效成形/扩散复合是在时效成形基础上,受层状复合材料启发发展而来的一种复合材料制备和构件成形一体化技术。时效成形,又称蠕变时效成形(creep age forming)、热压罐成形,与应力时效,蠕变时效相通,本质是时效蠕变变形机制和时效硬化提升强度同时发生的过程,能同时获得动态析出组织和实现精确成形。但是两个过程结合,二者相互影响,蠕变变形应力影响抑制沉淀相形核,但加速长大和粗化、诱发沉淀相定向排列,为组织各向同性的控制带来了新的问题,其中以沉淀相粗大、沿晶无沉淀带形成,致使界面不连续性对性能损害最为严重。

沉淀组织的稳定性、取向、分布、颗粒度是决定材料性能的关键要素。时效成形的高温下应力时效作用,原子取向扩散致使沉淀相取向排列、应力诱导沉淀相粗化严重、出现沿晶无沉淀相带(PFZ,phase free zone),致使组织不均匀,沉淀相不连续分布。机械性能显示应力时效和无应力时效相比拉伸性能稍低,屈服强度、延伸率明显降低。实验观察表明,沉淀相在应力时效下定向排列,其取向与拉应力方向平行,与压应力方向垂直;高应力区域,颗粒粗化严重。时效成形的高温时效使溶质原子扩散加剧,沉淀相在位错处异相形核和晶界处不连续分布,加剧了沉淀相析出速度和过时效。温度越高、时效时间越长,晶粒越粗大,PFZ越明显,沉淀相不连续分布越明显。PFZ的出现原因与高温时效沉淀相的长大和粗化消耗大量溶质原子导致沉淀相相周围基体中溶质原子贫化有关。软质的PFZ也是性能降低的一个重要原因。

发明内容

本发明的目的在于提供了界面层互扩散优化时效成形/扩散复合组织的相场模拟方法,它通过追踪应力时效全过程组织从无序固溶态到沉淀相析出、长大、粗化过程的微观形貌演化,解析沉淀相析出机制、取向粗化机制、晶间无沉淀带形成规律,探明两相弹性模量差、沉淀相结构、相界结构等微观相界失配应力场和时效成形宏观应力场诱发原子穿越结合面扩散的促进作用,得出结合层上沉淀行为变化规律,达到消除结合面不连续沉淀相的目的。

本发明的技术解决方案是:

一种界面层互扩散优化时效成形/扩散复合组织的相场模拟方法,其特殊之处在于,该方法是:

1)用原子尺度的相场扩散方程表征时效成形/扩散复合全过程界面层沉淀相的形核、长大、粗化过程的形貌演化;该形貌演化通过把原子占位的数据信息转化为微结构演化的图形信息来实现;

2)分析上述图形信息,观察界面层沉淀组织形貌演化,用原子占位定量表征形貌演化过程,明晰不同纳观相界失配应力场和宏观弹性应力场作用下原子取向扩散规律,得出原子取向扩散导致的沉淀相取向粗化和沿晶无沉淀带等界面层不连续性,明晰应力场对界面层不连续性的影响规律;

3)分析上述形貌演化过程中同相沉淀相、异相沉淀相间界面结构及其演化,用原子占位定量表征不同界面结构边界处、界面两侧的演化,分析原子簇聚和贫化机理,得到沉淀相相界稳定性和迁移规律,明晰沉淀相长大、取向粗化以及沿晶无沉淀带形成机制;

4)结合2)形貌演化和3)界面演化,加以原子取向扩散定量分析,得到影响界面层不连续性的因素,得出消除结合面不连续沉淀相的规律。

上述界面层互扩散优化时效成形/扩散复合组织的相场模拟方法,其特征在于,该方法具体包括:

分为两个步骤进行,第一,数据信息转化为图形信息;第二,分析图形信息得出有益于消除界面层不连续性的结果;

第一 数据信息转化为图形信息:

(1)依据微观相场理论编制方程,并求解;

(2)设置初始的变量值,环境变量:温度、成分、外加应力;固有参量:晶格常数,弹性常数,原子间相互作用势,热起伏;计算参量:格点数,迭代步数,迭代步长;

(3)方程求解过程是在倒易空间下进行的,并间隔一定步数转为正空间做一次判定,判定条件为:占位几率在0~1之间,程序继续执行;占位几率在0~1区间之外,计算终止,返回修改参数;

(4)计算结束得到一组原子占位几率值数值,把原子占位几率转化为图形信息;

第二 分析图形信息得出有益于消除界面层不连续性的结果:

(1)绘制不同温度、成分、应力条件下的形貌演化图,得到环境变量对沉淀相组织形貌影响规律;

(2)分析形貌演化图,得到沉淀相形核孕育期、形核、长大、粗化规律;沉淀相稳定性、弥散分布或取向排列的条件;同相、异相间界面关系、稳定性规律;

(3)绘制沉淀颗粒的中心至相界的原子占位变化曲线,分析得到沉淀相沉淀机制;

(4)针对具体沉淀相,可绘制组分原子在亚晶格格点位置的时间演化曲线,得到该沉淀相亚晶格位置组分变化规律,反位缺陷演化规律,原子扩散通量和路径;

(5)解析沉淀相异相、同相间界面关系及其稳定性,分析界面迁移机制,得到沉淀相长大时原子迁移规律;绘制界面两侧溶质、溶剂的原子分布和取向扩散,得到界面迁移的微观机制。

述求解方程的方法使用的数值方法是欧拉迭代法。

述沉淀相形貌与温度、应力、组分均有关系;其中宏/微耦合应力作用下,沉淀相取向排列,倾向于形成针状、棒状形貌。

述宏观应力指时效成形的外加应力;所述微观应力指异相沉淀相间的晶格错配应力,其中晶格错配应力与沉淀相错配度、相取向、弹性常数及分布均有关系。

述原子占位定量表征形貌演化和晶界迁移是通过追踪在某个格点位置所有组元的占位变化,得到该位置原子占位的动态变化规律;进而把选定区域放大,可定量得出沉淀相、相界面、界面两侧包括空间和时间的原子扩散规律,通过原子的扩散路径,分析组元簇聚、贫化、富化特点,解析沉淀相取向排列形成规律、界面结构稳定性规律。

该发明的有益效果在于:

该方法通过追踪应力时效全过程组织从无序固溶态至沉淀相析出、长大、粗化过程的微观形貌演化,解析沉淀相析出机制、取向生长和粗化规律、晶间无沉淀带形成,探明两相弹性模量差、沉淀相结构、相界结构等微观相界失配应力场和蠕变成形宏观应力场诱发原子穿越结合面扩散的促进作用,得出结合层上沉淀行为变化规律,达到消除结合面连续沉淀相的目的。

附图说明

图1是本发明的技术路线图;

图2是无应力时效(左)/应力时效(右)的形貌对照图;

图3是应力时效温度不同时的形貌图;

图4是沉淀相中的原子占位时间演化曲线;

图5是有序沉淀相长程序参数随时间的演化;

图6是应变能对组分原子占位的影响;

图7是界面形态和稳定性。

具体实施方式

下面结合实施例对本发明做进一步的描述。

图1是本发明的技术路线图。按照该技术路线图设定点的思路和步骤,可达到消除界面层不连续性的目的。首先,微观相场动力学方程的无需预先设定沉淀相,从秒级至数百小时的时间尺度,可得出GP区、过渡相、稳定相的形核、长大、粗化的全过程,具有物理原理优势。从软件条件角度,开发的宏观弹性应力场、微观相界失配应力场表示为自由能方程式的场变量函数,建立的宏观弹性应力场、纳观相界失配应力场函数与微扩散公式耦合的动力学方程,适合于含纳米尺度颗粒的各向异性弹塑性非均质体系,建立了模拟动态沉淀的条件。计算结果与实验对照,具有较好的一致性。

图2是无应力时效(左)/应力时效(右)的形貌对照图。图中有两种面心立方衍生结构的沉淀相A和B。无应力时效时,沉淀相弥散排列,形状为不规则圆形或椭圆形。考虑时效成形宏观应力和微观弹性错配应力后,沉淀相呈明显的取向排列。该现象说明,应力诱发原子定向扩散,致使沉淀相取向粗化,呈取向排列形貌。

时效成形/扩散复合的温度,对沉淀相形貌影响很大,变换温度的情况下,其组织形貌图如图3所示。图3选了六个温度,(a)-(f)的温度越来越高,从(b)图开始,取向粗化排列的沉淀相之间,包括同相之间、异相之间,有无沉淀相带出现,其宽度在一定的温度范围变化不大,在较高温度下,逐渐增大,如(f)图所示,沉淀颗粒粗化严重,带状取向分布明显,无沉淀带较宽。

图4是Ni3Al有序沉淀相中原子占位几率演化曲线。曲线可分为三个阶段,开始时期的平直对应的孕育期,原子上升或下降阶段对应的形核和长大,以及随后的又趋于平直对应粗化。在该相中Ni原子占据面心位置,Al原子占位顶角位置。孕育期原子占位几率几乎没有变化;随时效时间延长,在面心位置,Ni的占位开始增加而该位置的Al则下降,在顶角位置,Al原子的占位开始增加而该位置的Ni占位则呈下降趋势;继续保温,原子占位趋于平衡,但是Al在面心、Ni在顶角都有一定的占据几率。

图5是该相的长程序参数演化曲线,用于表征沉淀相有序度,解析沉淀相沉淀机制。观察该图,随时效时间延长,有序度增加,当有序度增加到趋于1时,逐渐平衡。序参数呈大范围小起伏变化,可以判定该相的沉淀机制为失稳分解。

应力时效的原子占位减去无应力时效的原子占位,得到的一组数据绘制图6,用于表征应力对原子占位的影响。(a)图表示面心立方面心位置,(b)图表示面心立方顶角位置。可以看出在两个位置,三种合金元素占位均受应变能影响,尤其是在顶角位置。

图7是一个平衡的64×64矩阵格点微结构形貌图。该图列举了三种类型的相与相的界面类型:第一,B结构(100)面和A结构的异相界面(如 a,b,c),该例中,B和A的相界就是B和A结构的共用面——(100)面,原子有序排列;第二,B结构(001)面和A结构的异相界面(如 d,e),该例中,B和A的相界不是某个相完整的晶面,而是2~4个原子厚度的弥散过渡界面,界面处原子无序排列;第三,B结构同相界面,即B结构的(100)面和另一B结构的(001)面的界面(如 g, h), g,h是沿Y轴排列变体和沿Z轴排列变体的B结构同相相界,和异相变体一样,这种界面有2~4个原子厚度的弥散过渡界面,界面处原子无序排列。其中f的B结构 (100)面和(001)面均与A结构相邻。 

以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号