首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >FPGA-based implementation of different families of fractional-order chaotic oscillators applying Griinwald-Letnikov method
【24h】

FPGA-based implementation of different families of fractional-order chaotic oscillators applying Griinwald-Letnikov method

机译:基于Griinwald-Letnikov方法的基于FPGA的不同系列分数阶混沌振荡器的实现

获取原文
获取原文并翻译 | 示例

摘要

Fractional-order chaotic oscillators are a hot topic of research and nowadays many new mathematical models have been introduced, which can be suitable for the development of novel applications in all related fields of science and engineering. However, the challenge is their implementation that can be performed using electronic devices. In this manner, we highlight the implementation of different families of fractional-order chaotic oscillators using field-programmable gate arrays (FPGAs). We detail the hardware implementation when solving the mathematical models applying the Grunwald-Letnikov method, and highlight the short-memory principle, which memory length is designed using specialized random-access-memory and read-only-memory blocks. In addition, we show how to reduce hardware resources by reusing blocks that are controlled by an especial architecture that is introduced herein, in order to perform an efficient processing of the data. Finally, using Cyclone IV GX FPGA DE2i-150 from Altera, DAS1612 digital-to-analog converter and fixed-point arithmetic of 32 bits, we provide experimental results that were observed in a Lecroy's oscilloscope showing working frequencies of fractional-order chaotic attractors between 77.59 and 84.9 MHz. (C) 2019 Elsevier B.V. All rights reserved.
机译:分数阶混沌振荡器是研究的热点,如今已经引入了许多新的数学模型,这些模型可以适合于科学和工程学所有相关领域中新颖应用的开发。然而,挑战在于它们的实现可以使用电子设备来执行。以这种方式,我们强调了使用现场可编程门阵列(FPGA)实现不同系列的分数阶混沌振荡器的实现。在解决使用Grunwald-Letnikov方法的数学模型时,我们详细介绍了硬件实现,并重点介绍了短内存原理,该内存长度是使用专门的随机访问内存和只读内存块设计的。此外,我们展示了如何通过重用本文介绍的特殊体系结构所控制的块来减少硬件资源,以执行数据的有效处理。最后,使用Altera的Cyclone IV GX FPGA DE2i-150,DAS1612数模转换器和32位定点算法,我们提供了在Lecroy示波器中观察到的实验结果,显示了分数阶混沌吸引子之间的工作频率。 77.59和84.9 MHz。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号