首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Two expanding integrable systems and quasi-Hamiltonian function associated with an equation hierarchy
【24h】

Two expanding integrable systems and quasi-Hamiltonian function associated with an equation hierarchy

机译:与方程层次相关的两个扩展的可积系统和拟哈密顿函数

获取原文
获取原文并翻译 | 示例

摘要

A Lie algebra sl(2) which is isomorphic to the known Lie algebra A, is introduced for which an isospectral Lax pair is presented, whose compatibility condition leads to a soliton-equa-tion hierarchy. By using the trace identity, its Hamiltonian structure is obtained. Especially, as its reduction cases, a Sine equation and a complex modified KdV(cmKdV) equation are obtained.respectively. Then we enlarge the sl(2) into a bigger Lie algebra sl(4) so that a type of expanding integrable model of the hierarchy is worked out. However, the soliton-equa-tion hierarchy is not integrable couplings. In order to generate the integrable couplings, an isospectral Lax pair is introduced. Under the frame of the zero curvature equation, we generate an integrable coupling whose quasi-Hamiltonian function is derived by employ-ing the variational identity. Finally, two types of computing formulas of the constant y are obtained, respectively.
机译:引入了与已知李代数A同构的李代数sl(2),为此提出了一个等谱Lax对,其相容性条件导致孤子-等式层次。通过使用痕迹身份,获得其哈密顿结构。特别是,作为其简化情况,分别获得了一个Sine方程和一个复杂的修正KdV(cmKdV)方程。然后我们将sl(2)扩展为更大的李代数sl(4),从而得出一种可扩展的层次可积模型。但是,孤子方程层次不是可积耦合。为了产生可积分耦合,引入了一个等光谱的Lax对。在零曲率方程的框架下,我们生成一个可积耦合,其准哈密顿函数是通过采用变分恒等式导出的。最后,分别获得了两种类型的常数y的计算公式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号