首页> 外文期刊>Combinatorica >Coloring number and on-line Ramsey theory for graphs and hypergraphs
【24h】

Coloring number and on-line Ramsey theory for graphs and hypergraphs

机译:图和超图的色数和在线Ramsey理论

获取原文
获取原文并翻译 | 示例

摘要

Let c,s,t be positive integers. The (c,s,t)-Ramsey game is played by Builder and Painter. Play begins with an s-uniform hypergraph G 0=(V,E 0), where E 0=Ø and V is determined by Builder. On the ith round Builder constructs a new edge e i (distinct from previous edges) and sets G i =(V,E i ), where E i =E i−1∪{e i }. Painter responds by coloring e i with one of c colors. Builder wins if Painter eventually creates a monochromatic copy of K s t , the complete s-uniform hypergraph on t vertices; otherwise Painter wins when she has colored all possible edges. We extend the definition of coloring number to hypergraphs so that χ(G)≤col(G) for any hypergraph G and then show that Builder can win (c,s,t)-Ramsey game while building a hypergraph with coloring number at most col(K s t ). An important step in the proof is the analysis of an auxiliary survival game played by Presenter and Chooser. The (p,s,t)-survival game begins with an s-uniform hypergraph H 0 = (V,Ø) with an arbitrary finite number of vertices and no edges. Let H i−1=(V i−1,E i−1) be the hypergraph constructed in the first i − 1 rounds. On the i-th round Presenter plays by presenting a p-subset P i ⊆V i−1 and Chooser responds by choosing an s-subset X i ⊆P i . The vertices in P i − X i are discarded and the edge X i added to E i−1 to form E i . Presenter wins the survival game if H i contains a copy of K s t for some i. We show that for positive integers p,s,t with s≤p, Presenter has a winning strategy.
机译:令c,s,t为正整数。 (c,s,t)-Ramsey游戏由Builder和Painter玩。播放从s均匀超图G 0 =(V,E 0 )开始,其中E 0 =Ø,V由Builder确定。在第i轮,Builder构造了一个新的边线e i (与先前的边线不同),并设置G i =(V,E i ),其中E i = E i-1 ∪{e i }。 Painter通过使用c种颜色之一对e i 进行着色来进行响应。如果Painter最终创建K s t 的单色副本(即t顶点上完整的s均匀超图),则Builder将获胜。否则,当画家为所有可能的边缘上色时,画家将获胜。我们将着色数的定义扩展到超图,以使任何超图G的χ(G)≤col(G),然后证明Builder最多可以赢得(c,s,t)-Ramsey游戏,同时构建带有着色数的超图col(K s t )。证明中的重要步骤是分析Presenter和Chooser玩的辅助生存游戏。 (p,s,t)生存游戏从s均匀超图H 0 =(V,Ø)开始,它具有任意数量的顶点且没有边。令H i-1 =(V i-1 ,E i-1 )是在前i-1轮中构造的超图。在第i轮,Presenter通过呈现p个子集P i ⊆V i-1 进行播放,并且Chooser通过选择s子集X i < / sub>⊆P i 。丢弃P i -X i 中的顶点,并将边缘X i 添加到E i-1 到表格E i 。如果H i 包含某个i的K s t 的副本,则演示者将赢得生存游戏。我们表明,对于正整数p,s,t且s≤p,Presenter具有获胜策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号