首页> 外文期刊>Circuits, systems and signal processing >Event-Triggered Reliable Dissipative Filtering for Delayed Neural Networks with Quantization
【24h】

Event-Triggered Reliable Dissipative Filtering for Delayed Neural Networks with Quantization

机译:具有量化的延迟神经网络的事件触发可靠的耗散滤波

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the event-triggered reliable dissipative filtering for delayed neural networks with quantization. First, an event-triggered scheme is introduced to save limited network resources, by which whether or not sampled signals should be transmitted to the quantizer depends on a predefined event-triggered condition. Second, with the event-triggered scheme, a new unified sampled-data filtering error system is established to deal with the issue of dissipative filtering for the neural networks with quantization. Third, by using the Lyapunov-Krasovskii functional method, a sufficient criterion is obtained to ensure asymptotic stability and strict (Q, S, R)-alpha-dissipativity for the filtering error system. Then, based on solutions to a set of linear matrix inequalities, both proper event-triggered parameters and filter parameters can be co-designed. Finally, the effectiveness and the superiority of the proposed method are verified by numerical simulation via two examples.
机译:本文研究了随着量化的延迟神经网络的事件触发可靠的耗散滤波。首先,引入了一个事件触发方案以节省有限的网络资源,通过该方案,通过该网络资源,通过该网络资源,它是否应该将采样信号传输到量化器取决于预定义的事件触发条件。其次,利用事件触发方案,建立一个新的统一采样数据过滤错误系统,以处理具有量化的神经网络的耗散滤波问题。第三,通过使用Lyapunov-Krasovskii功能方法,获得了足够的标准,以确保过滤误差系统的渐近稳定性和严格(Q,S,R) - 耗散耗尽误差系统。然后,基于对一组线性矩阵不等式的解决方案,可以共同设计适当的事件触发参数和滤波器参数。最后,通过两个示例通过数值模拟来验证所提出的方法的有效性和优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号