首页> 外文期刊>Circuits, systems, and signal processing >Underdetermined Independent Component Analysis Based on First- and Second-Order Statistics
【24h】

Underdetermined Independent Component Analysis Based on First- and Second-Order Statistics

机译:基于第一阶和二阶统计数据的未确定的独立分量分析

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a class of new algorithms based on first- and second-order statistics for independent source extraction of circular signals in underdetermined complex-valued mixture. The complex-valued mixing matrix is estimated by two extremely cost-effective novel methods based on the conditional mean of the mixtures which require some prior knowledge of the positive support of the real and/or imaginary parts of the sources. And the sources are recovered by combining the conventional minimum mean-squared error-based beamforming approach with the acquired prior knowledge. Based on how much prior knowledge is got, we propose several new algorithms. The complexity analysis about the proposed algorithms suggests that the algorithms which employ more prior knowledge have higher complexity, but their computational cost is significantly low. Two examples are provided for showing the possible applications of these proposed algorithms. Simulation results validate the effectiveness and reliability of all presented methods.
机译:本文提出了基于第一阶和二阶统计的一类新算法,用于在未确定的复合物混合物中的圆形信号的独立源源提取。基于需要一些先验知识的混合物的条件平均值,由两个极其成本效益的新方法估计了复合值的混合矩阵的估计,这是需要一些先验知识的来源的真实和/或虚部的虚部的正支持。通过将传统的最小平均平方误差的波束形成方法与获取的先验知识组合来恢复来源。根据需要多少现有知识,我们提出了几种新算法。关于所提出的算法的复杂性分析表明,采用更多现有知识的算法具有更高的复杂性,但它们的计算成本显着低。提供了两个示例,用于显示这些提出的算法的可能应用。仿真结果验证了所有呈现方法的有效性和可靠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号