【24h】

Recaptured Screen Image Demoiréing

机译:recaptured屏幕图像demoiréing

获取原文
获取原文并翻译 | 示例

摘要

In many situations, such as transferring data between devices and recording precious moments, we would like to capture the contents on screens using digital cameras for convenience. These recaptured screen images and videos suffer from a special type of degradation called "moire pattern", which is caused by the aliasing between the grid of display screen and the array of camera sensor. However, few works are proposed to tackle this problem. Considering the great success of convolutional neural networks (CNNs) in image restoration, we propose a CNN-based moire removal method for recaptured screen images. There are mainly two contributions in this paper. First, for the generation of training data, we propose an image registration algorithm via global homography transform and local patch matching to compensate the significant viewpoint disparity between the recaptured screen image and the moire-free image obtained via screenshot. We construct a moire removal and brightness improvement (MRBI) database with aligned moire-free and moire images. Second, we propose a convolutional neural Network with Additive and Multiplicative modules (termed as AMNet) to transfer the low light moire image to the bright moire-free image. The proposed network is trained with pixel-wise loss, perceptual loss, and adversarial loss. Extensive experiments on 340 test images demonstrate that the proposed method outperforms state-of-the-art moire removal methods.
机译:在许多情况下,例如在设备之间传输数据并记录宝贵的时刻,我们希望使用数码相机捕获屏幕上的内容,以便为方便起见。这些备注的屏幕图像和视频遭受了一种称为“莫尔图案”的特殊类型的劣化,这是由显示屏网格和相机传感器阵列之间的别名引起的。但是,提出了很少的作品来解决这个问题。考虑到卷积神经网络(CNNS)在图像恢复中的巨大成功,我们提出了一种基于CNN的MOIRE去除方法,用于重新筛选图像。本文主要有两种贡献。首先,为了生成训练数据,我们通过全局定位变换和本地补丁匹配提出了一种图像登记算法,以补偿通过屏幕截图获得的循环屏幕图像和可自由图像之间的显着观点差异。我们用对齐的Moire和Moire图像构建莫尔拆除和亮度改进(MRBI)数据库。其次,我们提出了一种卷积神经网络,具有添加剂和乘法模块(称为AMNET)以将低光莫尔图像转移到明亮的莫尔瓦图像。所提出的网络培训,具有像素明智的损失,感知损失和对抗性损失。在340测试图像上进行了广泛的实验表明,所提出的方法优于最先进的莫尔莫尔去除方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号