首页> 外文期刊>Circuits and Systems II: Express Briefs, IEEE Transactions on >False Data Injection Cyber-Attacks Mitigation in Parallel DC/DC Converters Based on Artificial Neural Networks
【24h】

False Data Injection Cyber-Attacks Mitigation in Parallel DC/DC Converters Based on Artificial Neural Networks

机译:基于人工神经网络的并联DC / DC转换器中的假数据喷射网络攻击缓解

获取原文
获取原文并翻译 | 示例

摘要

Because of the existence of communication networks and control applications, DC microgrids can be attacked by cyber-attackers. False data injection attack (FDIA) is one type of cyber-attacks where attackers try to inject false data to the target DC microgrid to destruct the control system. This brief discusses the effect of FDIAs in DC microgrids that are structured by parallel DC/DC converters and they are controlled by droop based control strategies to maintain the desired DC voltage level. Also, an effective and proper strategy based on an artificial neural network-based reference tracking application is introduced to remove the FDIAs in the DC microgrid.
机译:由于通信网络和控制应用的存在,DC MicroGrids可以由网络攻击者攻击。虚假数据注入攻击(FDIA)是一种网络攻击,攻击者试图将假数据注入目标DC MicroGrid以破坏控制系统。本简要讨论了FDIAS在由并联DC / DC转换器结构的DC微电网中的效果,并且它们由基于DROOP的控制策略控制,以保持所需的直流电压电平。而且,引入了基于人工神经网络的参考跟踪应用的有效和适当的策略以移除DC微电网中的FDIAS。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号