首页> 外文期刊>IEEE transactions on circuits and systems . I , Regular papers >Control of a Buck DC/DC Converter Using Approximate Dynamic Programming and Artificial Neural Networks
【24h】

Control of a Buck DC/DC Converter Using Approximate Dynamic Programming and Artificial Neural Networks

机译:使用近似动态规划和人工神经网络控制降压DC / DC转换器

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a novel artificial neural network (ANN) based control method for a dc/dc buck converter. The ANN is trained to implement optimal control based on approximate dynamic programming (ADP). Special characteristics of the proposed ANN control include: 1) The inputs to the ANN contain error signals and integrals of the error signals, enabling the ANN to have PI control ability; 2) The ANN receives voltage feedback signals from the dc/dc converter, making the combined system equivalent to a recurrent neural network; 3) The ANN is trained to minimize a cost function over a long time horizon, making the ANN have a stronger predictive control ability than a conventional predictive controller; 4) The ANN is trained offline, preventing the instability of the network caused by weight adjustments of an on-line training algorithm. The ANN performance is evaluated through simulation and hardware experiments and compared with conventional control methods, which shows that the ANN controller has a strong ability to track rapidly changing reference commands, maintain stable output voltage for a variable load, and manage maximum duty-ratio and current constraints properly.
机译:本文提出了一种用于DC / DC降压转换器的基于新的人工神经网络(ANN)控制方法。 ANN培训基于近似动态编程(ADP)来实现最佳控制。建议的ANN控制的特殊特性包括:1)ANN的输入包含误差信号和误差信号的积分,使ANN具有PI控制能力; 2)ANN从DC / DC转换器接收电压反馈信号,使得组合系统相当于经常性神经网络; 3)培训ANN,以最小化长时间地平线的成本函数,使ANN具有比传统预测控制器更强的预测控制能力; 4)ANN训练离线,防止由在线训练算法的重量调整引起的网络不稳定。 ANN性能通过仿真和硬件实验进行评估,并与传统的控制方法进行比较,表明ANN控制器具有很强的跟踪快速改变参考命令的能力,保持可变负载的稳定输出电压,并管理最大占空比和管理最大占空比和当前的约束正确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号