首页> 外文期刊>Circuits and Systems II: Express Briefs, IEEE Transactions on >Recursive Constrained Maximum Correntropy Criterion Algorithm for Adaptive Filtering
【24h】

Recursive Constrained Maximum Correntropy Criterion Algorithm for Adaptive Filtering

机译:递归约束的自适应滤波最大控制标准算法

获取原文
获取原文并翻译 | 示例

摘要

Recently, the gradient based constrained maximum correntropy criterion (GCMCC) algorithm has received considerable attention since it provides superior performance to the traditional methods and is robust to the non-Gaussian noise. However, the convergence of GCMCC algorithm depends on the learning rate. With a large learning rate, GCMCC converges fast but achieves a high steady state mean square deviation (MSD), and vice versa. To balance the convergence rate and the MSD, we propose a novel recursive CMCC (RCMCC) algorithm in this brief by utilizing the matrix inversion lemma. Furthermore, we provide a computationally efficient version of RCMCC (ERCMCC) algorithm by using some approximations. More importantly, we provide the convergence analysis of the RCMCC algorithm, and derive the stability condition and theoretical MSD. The theoretical analysis and superiorities of RCMCC and ERCMCC are validated by simulations.
机译:最近,基于梯度的受限最大控制标准(GCMCC)算法已经接受了相当大的关注,因为它为传统方法提供了卓越的性能,并且对非高斯噪声具有鲁棒性。然而,GCMCC算法的收敛取决于学习率。具有大的学习率,GCMCC收敛快,但实现了高稳态均方偏差(MSD),反之亦然。为了平衡收敛速率和MSD,我们通过利用矩阵反转引理来提出新的递归CMCC(RCMCC)算法。此外,我们通过使用一些近似来提供RCMCC(ERCMCC)算法的计算上有效的版本。更重要的是,我们提供RCMCC算法的收敛性分析,并导出稳定条件和理论MSD。通过模拟验证RCMCC和ERCMCC的理论分析和优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号