首页> 外文期刊>Biomedical signal processing and control >Deep learning for motor imagery EEG-based classification: A review
【24h】

Deep learning for motor imagery EEG-based classification: A review

机译:基于EEG的分类,深入学习:综述

获取原文
获取原文并翻译 | 示例

摘要

Objectives: The availability of large and varied Electroencephalogram (EEG) datasets, rapidly advances and inventions in deep learning techniques, and highly powerful and diversified computing systems have all permitted to easily analyzing those datasets and discovering vital information within. However, the classification process of EEG signals and discovering vital information should be robust, automatic, and with high accuracy. Motor Imagery (MI) EEG has attracted us due to its significant applications in daily life.Methods: This paper attempts to achieve those goals throughout a systematic review of the state-of-the-art studies within this field of research. The process began by intensely surfing the well-known specialized digital libraries and, as a result, 40 related papers were gathered. The papers were scrutinized upon multiple noteworthy technical issues, among them deep neural network architecture, input formulation, number of MI EEG tasks, and frequency range of interest.Outcomes: Deep neural networks build robust and automated systems for the classification of MI EEG recordings by exploiting the whole input data throughout learning salient features. Specifically, convolutional neural networks (CNN) and hybrid-CNN (h-CNN) are the dominant architectures with high performance in comparison to public datasets with other types of architectures. The MI related datasets, input formulation, frequency ranges, and preprocessing and regularization methods were also reviewed.Inferences: This review gives the required preliminaries in developing MI EEG-based BCI systems. The review process of the published articles in the last five years aims to help in choosing the appropriate deep neural network architecture and other hyperparameters for developing those systems.
机译:目标:大型和各种脑电图(EEG)数据集(EEG)数据集的可用性,迅速进步和深度学习技术的发明,以及高强度和多样化的计算系统允许容易地分析这些数据集并发现内部的重要信息。但是,EEG信号的分类过程和发现重要信息的稳健性,自动,高精度。由于其日常生活中的重要应用,Motor Imagery(MI)eeg吸引了美国。方法:本文试图在整个研究领域内的最先进的研究中实现这些目标。该过程开始通过强烈冲浪,众所周知的专业数字图书馆,因此收集了40篇相关论文。在多个值得注意的技术问题上审查了这些论文,其中包括深度神经网络架构,输入制定,MI EEG任务数以及频率范围内的兴趣范围:深度神经网络为MI EEG记录的分类构建鲁棒和自动化系统在整个学习突出功能中利用整个输入数据。具体地,卷积神经网络(CNN)和Hybrid-CNN(H-CNN)是与具有其他类型架构的公共数据集相比具有高性能的主导架构。 MI相关数据集,输入配方,频率范围和预处理和正规化方法也进行了综述。本综述提供了开发基于MI EEG的BCI系统所需的预备。过去五年的已发表文章的审查流程旨在帮助选择适当的深度神经网络架构和其他普遍参数,以便开发这些系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号