首页> 外文期刊>IEEE transactions on automation science and engineering >EEG Motor Imagery Classification With Sparse Spectrotemporal Decomposition and Deep Learning
【24h】

EEG Motor Imagery Classification With Sparse Spectrotemporal Decomposition and Deep Learning

机译:EEG电机图像分类稀疏光谱仪分解和深度学习

获取原文
获取原文并翻译 | 示例

摘要

Classification of electroencephalogram-based motor imagery (MI-EEG) tasks raises a big challenge in the design and development of brain-computer interfaces (BCIs). In view of the characteristics of nonstationarity, time-variability, and individual diversity of EEG signals, a deep learning framework termed SSD-SE-convolutional neural network (CNN) is proposed for MI-EEG classification. The framework consists of three parts: 1) the sparse spectrotemporal decomposition (SSD) algorithm is proposed for feature extraction, overcoming the drawbacks of conventional time-frequency analysis methods and enhancing the robustness to noise; 2) a CNN is constructed to fully exploit the time-frequency features, thus outperforming traditional classification methods both in terms of accuracy and kappa value; and 3) the squeeze-and-excitation (SE) blocks are adopted to adaptively recalibrate channelwise feature responses, which further improves the overall performance and offers a compelling classification solution for MI-EEG applications. Experimental results on two datasets reveal that the proposed framework outperforms state-of-the-art methods in terms of both classification quality and robustness. The advantages of SSD-SE-CNN include high accuracy, high efficiency, and robustness to cross-trial and cross-session variations, making it an ideal candidate for long-term MI-EEG applications. Note to Practitioners-Motor imagery-based brain-computer interfaces (MI-BCIs) are widely used to allow a user to control a device using only his or her neural activity. This article proposed a new framework to classify two-class MI tasks based on electroencephalography (EEG) signals. In this framework, a new sparse spectrotemporal decomposition method is used to extract time-frequency features from EEG signals. A convolutional neural network with squeeze-and-excitation blocks is then constructed to classify the MI tasks. We show the superiority of our method on two datasets and prove its feasibility for long-term MI-BCI applications.
机译:基于脑电图的脑电图的电动机图像(MI-EEG)任务的分类在脑 - 计算机接口(BCIS)的设计和开发中提出了一个大挑战。鉴于非间转性,时间可变性和EEG信号的各个多样性的特征,提出了一种被称为SSD-SE卷积神经网络(CNN)的深度学习框架,用于MI-EEG分类。该框架由三部分组成:1)提出了稀疏的光谱分析分解(SSD)算法进行特征提取,克服了传统的时频分析方法的缺点并增强了噪声的鲁棒性; 2)构造CNN以完全利用时频特征,从而在精度和κ值方面表现出传统的分类方法; 3)采用挤压和激励(SE)块来自适应地重新校准通道功能响应,这进一步提高了整体性能,并为MI-EEG应用提供了一个引人注目的分类解决方案。两个数据集的实验结果表明,在分类质量和稳健性方面,所提出的框架优于最先进的方法。 SSD-SE-CNN的优点包括对交叉试验和交叉会话变化的高精度,高效率和稳健性,使其成为长期MI-EEG应用的理想候选者。注意对于从业者 - 电机图像的大脑 - 计算机接口(MI-BCI)被广泛用于允许用户仅使用他或她的神经活动来控制设备。本文提出了一种基于脑电图(EEG)信号对两级MI任务进行分类的新框架。在该框架中,新的稀疏光谱分析分解方法用于从EEG信号中提取时间频率特征。然后构建具有挤压和激励块的卷积神经网络以对MI任务进行分类。我们在两个数据集中展示了我们的方法的优势,并证明了对长期MI-BCI应用的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号