首页> 外文期刊>Biomedical signal processing and control >Using eigenstructure decompositions of time-varying autoregressions in common spatial patterns-based EEG signal classification
【24h】

Using eigenstructure decompositions of time-varying autoregressions in common spatial patterns-based EEG signal classification

机译:在基于常见空间模式的脑电信号分类中使用时变自回归的本征结构分解

获取原文
获取原文并翻译 | 示例

摘要

Brain-computer interfaces based on common spatial patterns (CSP) depend on the operational frequency bands of the events to be discriminated. This problem has been addressed through sub-band decompositions of the electroencephalographic signals using filter banks, then the performance relies on the number of filters that are stacked and the criteria to select their bandwidths. Here, we propose an alternative approach based on an eigenstructure decomposition of the signals' time-varying autoregressions (TVAR). The eigen-based decomposition of the TVAR allows for subject-specific estimation of the principal time-varying frequencies, then such principal eigencomponents can be used in the traditional CSP-based classification. We show through a series of numerical experiments that the proposed classification scheme can achieve a performance which is comparable with the one obtained through the filter bank-based approach. However, our method does not rely on a preliminary selection of a frequency band, yet good performance is achieved under realistic conditions (such as reduced number of sensors and small amount of training data) independently of the time interval selected.
机译:基于公共空间模式(CSP)的脑机接口取决于要区分的事件的操作频带。通过使用滤波器组对脑电信号进行子带分解已解决了此问题,然后性能取决于堆叠的滤波器数量和选择其带宽的标准。在这里,我们提出了一种基于信号时变自回归(TVAR)的特征结构分解的替代方法。 TVAR的基于特征的分解允许对主要时变频率进行主题特定的估计,然后可以在传统的基于CSP的分类中使用此类主要特征成分。我们通过一系列数值实验表明,提出的分类方案可以实现与通过基于滤波器组的方法获得的性能相当的性能。但是,我们的方法不依赖于频带的初步选择,但是在实际条件下(例如减少的传感器数量和少量的训练数据)在不依赖于所选时间间隔的情况下仍可获得良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号