首页> 外文期刊>Biomedical signal processing and control >Common spatial patterns combined with phase synchronization information for classification of EEG signals
【24h】

Common spatial patterns combined with phase synchronization information for classification of EEG signals

机译:常见的空间模式与EEG信号分类的相位同步信息相结合

获取原文
获取原文并翻译 | 示例

摘要

The common spatial patterns (CSP) approach is a classical and representative technique of optimizing spatial filters of electroencephalogram (EEG) signals in the community of brain computer interfaces (BCI). It, however, utilizes only amplitude information of the EEG signals. The phase information of the multi-channel EEG series, on the other hand, plays an important role in characterizing brain activities. In this paper, we consider enhancing the classification performance of CSP by making explicit use of information of the phase synchronization. An index, termed as rank-weighted phase lag index (rWPLI), is introduced to qualify the intrinsic phase synchronization. The rWPLI features are then incorporated into the CSP framework via three ways of feature combinations. The classification experiments on real EEG data sets of BCI competitions show the effectiveness of the proposed framework. (C) 2019 Elsevier Ltd. All rights reserved.
机译:常见的空间模式(CSP)方法是优化大脑计算机接口社区中的脑电图(EEG)信号的空间滤波器(BCI)中的空间滤波器的经典和代表性技术。然而,它仅利用EEG信号的幅度信息。另一方面,多通道EEG系列的相位信息在表征大脑活动方面发挥着重要作用。在本文中,我们考虑通过明确使用相位同步信息来提高CSP的分类性能。被引入称为秩加权阶段滞后指数(RWPLI)的索引以限定内在相位同步。然后通过三种特征组合的方式将RWPLI特征结合到CSP框架中。 BCI比赛实际EEG数据集的分类实验表明了拟议框架的有效性。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号