首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >EEG Signal Processing Based on Multivariate Empirical Mode Decomposition and Common Spatial Pattern Hybrid Algorithm
【24h】

EEG Signal Processing Based on Multivariate Empirical Mode Decomposition and Common Spatial Pattern Hybrid Algorithm

机译:基于多元经验模态分解和公共空间模式混合算法的脑电信号处理

获取原文
获取原文并翻译 | 示例

摘要

The high accuracy of electroencephalogram (EEG) signal classification is the premise for the wide application of brain computer interface (BCI). In this paper, a hybrid method consisting of multivariate empirical mode decomposition (MEMD) and common space pattern (CSP) is proposed to recognize left-hand and right-hand hypothetical motion from EEG signals. Experiments were carried out using the BCI competition II imagery database. EEG signals were decomposed into multiple intrinsic mode functions (IMFs) by MEMD. The IMF functions with high correlation were processed by CSP, and AR coefficients and entropy values were extracted as features. After genetic algorithm optimization, classification is carried out. Our research results show that the K nearest neighbor (KNN) as an optimal classification model produces 85.36% accuracy. We also compare the proposed algorithm with the existing algorithms. The experimental results show that the performance of the proposed algorithm is comparable to or better than that of many existing algorithms.
机译:脑电图(EEG)信号分类的高精度是脑计算机接口(BCI)广泛应用的前提。本文提出了一种由多元经验模式分解(MEMD)和公共空间模式(CSP)组成的混合方法,以从EEG信号中识别左手和右手假设的运动。实验是使用BCI Competition II影像数据库进行的。脑电信号被MEMD分解为多个固有模式函数(IMF)。通过CSP处理具有高相关性的IMF函数,并提取AR系数和熵值作为特征。遗传算法优化后,进行分类。我们的研究结果表明,K最近邻(KNN)作为最佳分类模型可产生85.36%的准确性。我们还将提出的算法与现有算法进行比较。实验结果表明,所提算法的性能与许多现有算法相当或更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号