首页> 外文期刊>Biomedical Engineering, IEEE Transactions on >A New Paradigm of Interactive Artery/Vein Separation in Noncontrast Pulmonary CT Imaging Using Multiscale Topomorphologic Opening
【24h】

A New Paradigm of Interactive Artery/Vein Separation in Noncontrast Pulmonary CT Imaging Using Multiscale Topomorphologic Opening

机译:多尺度拓扑形态学在非对比性肺部CT成像中动静脉分离的新范例

获取原文
获取原文并翻译 | 示例

摘要

Distinguishing pulmonary arterial and venous (A/V) trees via in vivo imaging is a critical first step in the quantification of vascular geometry for the purpose of diagnosing several pulmonary diseases and to develop new image-based phenotypes. A multiscale topomorphologic opening (MSTMO) algorithm has recently been developed in our laboratory for separating A/V trees via noncontrast pulmonary human CT imaging. The method starts with two sets of seeds—one for each of A/V trees and combines fuzzy distance transform and fuzzy connectivity in conjunction with several morphological operations leading to locally adaptive iterative multiscale opening of two mutually conjoined structures. In this paper, we introduce the methods for handling “local update” and “separators” into our previous theoretical formulation and incorporate the algorithm into an effective graphical user interface (GUI). Results of a comprehensive evaluative study assessing both accuracy and reproducibility of the method under the new setup are presented and also, the effectiveness of the GUI-based system toward improving A/V separation results is examined. Accuracy of the method has been evaluated using mathematical phantoms, CT images of contrast-separated pulmonary A/V casting of a pig’s lung and noncontrast pulmonary human CT imaging. The method has achieved 99% true A/V labeling in the cast phantom and, almost, 92–94% true labeling in human lung data. Reproducibility of the method has been evaluated using multiuser A/V separation in human CT data along with contrast-enhanced CT images of a pig’s lung at different positive end-expiratory pressures (PEEPs). The method has achieved, almost, 92–98% agreements in multiuser A/V labeling with ICC for A/V measures being over 0.96–0.99. Effectiveness of the GUI-based method has been evaluated on human data in terms of improvements of accuracy of A/V sep- ration results and results have shown 8–22% improvements in true A/V labeling. Both qualitative and quantitative results found are very promising.
机译:通过体内成像区分肺动脉和静脉(A / V)树是量化血管几何学的关键第一步,目的是诊断几种肺部疾病并发展基于图像的新表型。最近在我们的实验室中开发了一种多尺度拓扑形态学开口(MSTMO)算法,用于通过非对比肺部人类CT成像分离A / V树。该方法从两组种子开始-每棵A / V树一组,并结合模糊距离变换和模糊连通性以及几种形态学运算,从而导致两个相互连接的结构的局部自适应迭代多尺度打开。在本文中,我们将处理“本地更新”和“分隔符”的方法引入到我们以前的理论公式中,并将该算法合并到有效的图形用户界面(GUI)中。提出了评估该方法在新设置下的准确性和可重复性的综合评估研究结果,并且还检查了基于GUI的系统对改进A / V分离结果的有效性。该方法的准确性已通过数学模型,猪肺部对比分离的肺部A / V铸件的CT图像和非对比肺部CT图像进行了评估。该方法已在铸模中实现了99%的真实A / V标记,在人类肺部数据中几乎实现了92-94%的真实标记。该方法的重现性已通过在人的CT数据中进行多用户A / V分离以及在不同的呼气末正压(PEEP)下猪肺的对比增强CT图像进行了评估。该方法在多用户A / V标记中几乎达到了92-98%的协议,其中ICC的A / V测量值超过0.96-0.99。已基于人类数据评估了基于GUI的方法的有效性,以提高视听分离结果的准确性,结果表明,在真正的视听标记中提高了8-22%。发现的定性和定量结果都是非常有前途的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号