首页> 外文期刊>IEEE Transactions on Biomedical Engineering >Robust Heartbeat Detection From Multimodal Data via CNN-Based Generalizable Information Fusion
【24h】

Robust Heartbeat Detection From Multimodal Data via CNN-Based Generalizable Information Fusion

机译:通过基于CNN的通用信息融合从多峰数据中进行稳健的心跳检测

获取原文
获取原文并翻译 | 示例

摘要

Objective: Heartbeat detection remains central to cardiac disease diagnosis and management, and is traditionally performed based on electrocardiogram (ECG). To improve robustness and accuracy of detection, especially, in certain critical-care scenarios, the use of additional physiological signals such as arterial blood pressure (BP) has recently been suggested. Therefore, estimation of heartbeat location requires information fusion from multiple signals. However, reported efforts in this direction often obtain multimodal estimates somewhat indirectly, by voting among separately obtained signal-specific intermediate estimates. In contrast, we propose to directly fuse information from multiple signals without requiring intermediate estimates, and thence estimate heartbeat location in a robust manner. Method: We propose as a heartbeat detector, a convolutional neural network (CNN) that learns fused features from multiple physiological signals. This method eliminates the need for hand-picked signal-specific features and ad hoc fusion schemes. Furthermore, being data-driven, the same algorithm learns suitable features from arbitrary set of signals. Results: Using ECG and BP signals of PhysioNet 2014 Challenge database, we obtained a score of 94%. Furthermore, using two ECG channels of MIT-BIH arrhythmia database, we scored 99.92%. Both those scores compare favorably with previously reported database-specific results. Also, our detector achieved high accuracy in a variety of clinical conditions. Conclusion: The proposed CNN-based information fusion (CIF) algorithm is generalizable, robust and efficient in detecting heartbeat location from multiple signals. Significance: In medical signal monitoring systems, our technique would accurately estimate heartbeat locations even when only a subset of channels are reliable.
机译:目的:心跳检测仍然是心脏病诊断和管理的核心,传统上是根据心电图(ECG)进行的。为了提高检测的鲁棒性和准确性,尤其是在某些重症监护情况下,最近已建议使用其他生理信号,例如动脉血压(BP)。因此,心跳位置的估计需要来自多个信号的信息融合。但是,在此方向上报告的工作通常通过在单独获得的信号特定中间估计之间进行表决而间接地间接获得多峰估计。相比之下,我们建议直接融合来自多个信号的信息,而无需中间估计,从而以稳健的方式估计心跳位置。方法:我们提出了一种卷心神经网络(CNN)作为心跳检测器,该神经网络从多个生理信号中学习融合特征。这种方法消除了对人工选择的信号特定功能和临时融合方案的需要。此外,由于是数据驱动的,同一算法从任意一组信号中学习合适的特征。结果:使用PhysioNet 2014 Challenge数据库的ECG和BP信号,我们获得了94%的分数。此外,使用MIT-BIH心律失常数据库的两个ECG通道,我们得分为99.92%。这两个分数与以前报告的特定于数据库的结果相比具有优势。此外,我们的检测器在各种临床条件下均达到了高精度。结论:所提出的基于CNN的信息融合(CIF)算法在检测来自多个信号的心跳位置方面具有通用性,鲁棒性和高效性。启示:在医学信号监测系统中,即使只有一部分通道可靠,我们的技术也可以准确估算心跳位置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号