首页> 外文期刊>Autonomous Robots >An integrated particle filter and potential field method applied to cooperative multi-robot target tracking
【24h】

An integrated particle filter and potential field method applied to cooperative multi-robot target tracking

机译:集成粒子滤波和势场方法在协同多机器人目标跟踪中的应用

获取原文
获取原文并翻译 | 示例

摘要

We describe a novel method whereby a particle filter is used to create a potential field for robot control without prior clustering. We show an application of this technique to control a team of mobile robots to cooperatively locate and track a moving target. The particle filter models a probability distribution over the estimated location of the target, providing robust tracking despite frequent target occlusion. This method extends previous work in particle-filter-based tracking in two important ways. First, the particle cloud is never clustered to find a single estimate of target location. Instead, robot motion is guided by a potential field generated directly from the particle cloud. Secondly, effective coordinated multi-robot searching and tracking can be achieved by simply assigning a subset of the particles to each robot.
机译:我们描述了一种新颖的方法,在此方法中,无需事先进行聚类,即可使用粒子过滤器为机器人控制创建势场。我们展示了该技术在控制一组移动机器人协作定位和跟踪移动目标方面的应用。粒子过滤器对目标的估计位置上的概率分布进行建模,尽管目标经常被遮挡,但仍可提供可靠的跟踪。该方法以两种重要方式扩展了以前基于粒子过滤器的跟踪的工作。首先,粒子云永远不会聚类以找到目标位置的单个估计值。取而代之的是,机器人运动由直接从粒子云生成的势场引导。其次,可以通过简单地将粒子的子集分配给每个机器人来实现有效的多机器人协同搜索和跟踪。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号