首页> 外文期刊>Autonomous agents and multi-agent systems >From demonstrations to task-space specifications.Using causal analysis to extract rule parameterization from demonstrations
【24h】

From demonstrations to task-space specifications.Using causal analysis to extract rule parameterization from demonstrations

机译:从演示到任务空间规范。对于从演示中提取规则参数化的因果区分析

获取原文
获取原文并翻译 | 示例

摘要

Learning models of user behaviour is an important problem that is broadly applicable across many application domains requiring human-robot interaction. In this work, we show that it is possible to learn generative models for distinct user behavioural types, extracted from human demonstrations, by enforcing clustering of preferred task solutions within the latent space. We use these models to differentiate between user types and to find cases with overlapping solutions. Moreover, we can alter an initially guessed solution to satisfy the preferences that constitute a particular user type by backpropagating through the learned differentiable models. An advantage of structuring generative models in this way is that we can extract causal relationships between symbols that might form part of the user's specification of the task, as manifested in the demonstrations. We further parameterize these specifications through constraint optimization in order to find a safety envelope under which motion planning can be performed. We show that the proposed method is capable of correctly distinguishing between three user types, who differ in degrees of cautiousness in their motion, while performing the task of moving objects with a kinesthetically driven robot in a tabletop environment. Our method successfully identifies the correct type, within the specified time, in 99% [97.8-99.8] of the cases, which outperforms an IRL baseline. We also show that our proposed method correctly changes a default trajectory to one satisfying a particular user specification even with unseen objects. The resulting trajectory is shown to be directly implementable on a PR2 humanoid robot completing the same task.
机译:用户行为的学习模型是广泛适用于需要人机机器人交互的许多应用领域的重要问题。在这项工作中,我们表明,通过在潜在空间内实施优选的任务解决方案的聚类,可以学习从人类演示中提取的不同用户行为类型的生成模型。我们使用这些模型来区分用户类型,并找到具有重叠解决方案的案例。此外,我们可以改变最初猜测的解决方案以满足通过学习可分辨率模型的反向化构成特定用户类型的偏好。以这种方式构建生成模型的一个优点是我们可以提取可能构成用户对任务规范的一部分的符号之间的因果关系,如在演示中。我们通过约束优化进一步参数化这些规范,以便找到可以执行运动规划的安全包络。我们表明,该方法能够正确地区分三种用户类型,他们在运动中具有谨慎程度的程度,同时在桌面环境中使用动态驱动的机器人进行移动物体的任务。我们的方法在指定时间内成功地标识了正确的类型,以99%[97.8-99.8]的情况,这优于IRL基线。我们还表明,即使使用未经看法,我们的提出方法也正确地将默认轨迹更改为满足特定用户规范的默认轨迹。结果轨迹显示在PR2人形机器人上直接可实现,完成相同的任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号