首页> 外文期刊>Autonomous agents and multi-agent systems >Coordinating actions in congestion games: impact of top-down and bottom-up utilities
【24h】

Coordinating actions in congestion games: impact of top-down and bottom-up utilities

机译:拥塞游戏中的协调动作:自上而下和自下而上的实用程序的影响

获取原文
获取原文并翻译 | 示例

摘要

Congestion games offer a perfect environment in which to study the impact of local decisions on global utilities in multiagent systems. What is particularly interesting in such problems is that no individual action is intrinsically "good" or "bad" but that combinations of actions lead to desirable or undesirable outcomes. As a consequence, agents need to learn how to coordinate their actions with those of other agents, rather than learn a particular set of "good" actions. A congestion game can be studied from two different perspectives: (ⅰ) from the top down, where a global utility (e.g., a system-centric view of congestion) specifies the task to be achieved; or (ⅱ) from the bottom up, where each agent has its own intrinsic utility it wants to maximize. In many cases, these two approaches are at odds with one another, where agents aiming to maximize their intrinsic utilities lead to poor values of a system level utility. In this paper we extend results on difference utilities, a form of shaped utility that enables multiagent learning in congested, noisy conditions, to study the global behavior that arises from the agents' choices in two types of congestion games. Our key result is that agents that aim to maximize a modified version of their own intrinsic utilities not only perform well in terms of the global utility, but also, on average perform better with respect to their own original utilities. In addition, we show that difference utilities are robust to agents "defecting" and using their own intrinsic utilities, and that performance degrades gracefully with the number of defectors.
机译:拥塞游戏提供了一个理想的环境,可以在其中研究本地决策对多代理系统中的全球公用事业的影响。在此类问题中特别令人感兴趣的是,没有任何一项行动本质上是“好”或“坏”的,而是行动的组合会导致理想的或不良的结果。结果,代理需要学习如何与其他代理协调其行为,而不是学习一组特定的“良好”行为。拥塞游戏可以从两个不同的角度进行研究:(ⅰ)从上到下,其中一个全局实用程序(例如,以系统为中心的拥塞视图)指定了要完成的任务;或(ⅱ)自下而上,其中每个代理都有其自己希望最大化的内在效用。在许多情况下,这两种方法是相互矛盾的,在这种情况下,旨在最大化其内在效用的代理会导致系统级效用的价值降低。在本文中,我们扩展了关于差异效用的结果,该效用是一种可在拥挤,嘈杂的情况下进行多智能体学习的有形效用的形式,用于研究由两种类型的拥塞游戏中的智能体选择所引起的整体行为。我们的主要结果是,旨在最大化自身固有实用程序的修改版本的代理程序,不仅在全局实用程序方面表现良好,而且相对于自己的原始实用程序,平均而言表现也更好。此外,我们证明了差异实用程序对于代理“缺陷”并使用其自身的内在实用程序具有鲁棒性,并且随着缺陷数量的增加,性能会适当降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号