首页> 外文期刊>Autonomous agents and multi-agent systems >Self-organized task allocation to sequentially interdependent tasks in swarm robotics
【24h】

Self-organized task allocation to sequentially interdependent tasks in swarm robotics

机译:自组织任务分配,以解决群体机器人中顺序相关的任务

获取原文
获取原文并翻译 | 示例

摘要

In this article we present a self-organized method for allocating the individuals of a robot swarm to tasks that are sequentially interdependent. Tasks that are sequentially interdependent are common in natural and artificial systems. The proposed method does neither rely on global knowledge nor centralized components. Moreover, it does not require the robots to communicate. The method is based on the delay experienced by the robots working on one subtask when waiting for input from another subtask. We explore the capabilities of the method in different simulated environments. Additionally, we evaluate the method in a proof-of-concept experiment using real robots. We show that the method allows a swarm to reach a near-optimal allocation in the studied environments, can easily be transferred to a real robot setting, and is adaptive to changes in the properties of the tasks such as their duration. Finally, we show that the ideal setting of the parameters of the method does not depend on the properties of the environment.
机译:在本文中,我们提出了一种自组织的方法,用于将机器人群体的个体分配给顺序相互依赖的任务。顺序相互依赖的任务在自然系统和人工系统中都很常见。所提出的方法既不依赖于全球知识也不依赖于集中式组件。而且,它不需要机器人进行通信。该方法基于等待一个子任务的机器人等待另一子任务的输入时经历的延迟。我们探索了该方法在不同模拟环境中的功能。此外,我们在使用真实机器人的概念验证实验中评估了该方法。我们表明,该方法可以使群体在所研究的环境中达到接近最佳的分配,可以轻松地转移到真实的机器人环境中,并且可以适应任务性质(例如持续时间)的变化。最后,我们证明了该方法参数的理想设置不取决于环境的属性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号