首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >Online Optimization of Fuzzy Controller for Coke-Oven Combustion Process Based on Dynamic Just-in-Time Learning
【24h】

Online Optimization of Fuzzy Controller for Coke-Oven Combustion Process Based on Dynamic Just-in-Time Learning

机译:基于动态实时学习的焦炉燃烧过程模糊控制器在线优化

获取原文
获取原文并翻译 | 示例

摘要

To guarantee the control performance of a fuzzy control system for the combustion process in a coke oven, the parameters of the fuzzy controller need to be optimized so that the controller can handle large changes in the operating state of the oven. This paper describes an online optimization method for this purpose. In this method, the distance and angle of the trend of the change are used to select data, and just-in-time learning is used to create a dynamic sample base and to build a radial-basis-function neural-network model of the process. A variable-universe fuzzy logic controller controls the process, and an adaptive differential evolution algorithm optimizes the universe parameters. This enables the controller to adapt to changes in the operating state in a timely fashion. Simulation results demonstrate the effectiveness of the method.
机译:为了保证用于焦炉中燃烧过程的模糊控制系统的控制性能,需要对模糊控制器的参数进行优化,以使该控制器可以处理炉的运行状态的较大变化。本文介绍了一种用于此目的的在线优化方法。在这种方法中,使用变化趋势的距离和角度来选择数据,并使用即时学习来创建动态样本库并建立模型的径向基函数神经网络模型。处理。可变宇宙模糊逻辑控制器控制该过程,而自适应差分进化算法可优化宇宙参数。这使控制器能够及时适应操作状态的变化。仿真结果证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号