首页> 外文期刊>IEEE transactions on automation science and engineering >An Automatic Process Monitoring Method Using Recurrence Plot in Progressive Stamping Processes
【24h】

An Automatic Process Monitoring Method Using Recurrence Plot in Progressive Stamping Processes

机译:在递进冲压过程中使用递归图的自动过程监控方法

获取原文
获取原文并翻译 | 示例

摘要

In progressive stamping processes, condition monitoring based on tonnage signals is of great practical significance. One typical fault in progressive stamping processes is a missing part in one of the die stations due to malfunction of part transfer in the press. One challenging question is how to detect the fault due to the missing part in certain die stations as such a fault often results in die or press damage, but only provides a small change in the tonnage signals. To address this issue, this article proposes a novel automatic process monitoring method using the recurrence plot (RP) method. Along with the developed method, we also provide a detailed interpretation of the representative patterns in the recurrence plot. Then, the corresponding relationship between the RPs and the tonnage signals under different process conditions is fully investigated. To differentiate the tonnage signals under normal and faulty conditions, we adopt the recurrence quantification analysis (RQA) to characterize the critical patterns in the RPs. A parameter learning algorithm is developed to set up the appropriate parameter of the RP method for progressive stamping processes. A real case study is provided to validate our approach, and the results are compared with the existing literature to demonstrate the outperformance of this proposed monitoring method.
机译:在渐进式冲压过程中,基于吨位信号的状态监控具有重要的现实意义。渐进式冲压过程中的一个典型故障是由于压力机中零件传输的故障而导致模具工位之一中缺少零件。一个具有挑战性的问题是如何在某些模具工位中检测到由于缺少零件而引起的故障,因为这种故障​​通常会导致模具或冲压机损坏,但吨位信号只会产生很小的变化。为了解决此问题,本文提出了一种使用递归图(RP)方法的新颖的自动过程监控方法。除了开发的方法外,我们还提供了对重复图中代表性模式的详细解释。然后,充分研究了不同工艺条件下RP与吨位信号之间的对应关系。为了区分正常和故障情况下的吨位信号,我们采用递归量化分析(RQA)来表征RP中的关键模式。开发了一种参数学习算法来为渐进式冲压过程设置RP方法的适当参数。提供了一个实际案例研究来验证我们的方法,并将结果与​​现有文献进行比较,以证明此提议的监视方法的出色表现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号