首页> 外文期刊>IEEE transactions on automation science and engineering >Exploiting Moving Objects: Multi-Robot Simultaneous Localization and Tracking
【24h】

Exploiting Moving Objects: Multi-Robot Simultaneous Localization and Tracking

机译:利用移动物体:多机器人同时定位和跟踪

获取原文
获取原文并翻译 | 示例

摘要

Cooperative localization has been proved to effectively outperform single-robot localization. While most of the state-of-the-art multi-robot localization systems either treat moving objects as outliers or accomplish moving object tracking separately from localization, we argue that augmenting moving objects into the localization estimation can further enhance localization performance and is indeed the key to solve several localization challenges such as insufficient map features, no map features, and symmetric maps. In this paper, a multi-robot simultaneous localization and tracking (MR-SLAT) algorithm based on the extended Kalman filter is proposed, and multiple hypothesis tracking (MHT) is integrated into MR-SLAT for dealing with challenging data association issues. The proposed approach is verified in two scenarios: the NAO humanoid robots equipped with cameras and WiFi are used in the RoboCup scenario and the robotic vehicles with laser scanners and dedicated short-range communications (DSRC) are used in the traffic scenario. The experiments with ground truth show that MR-SLAT, by exploiting moving objects, is superior to single-robot localization and cooperative localization in challenging scenarios. Ample experimental and simulation results demonstrate the effectiveness of exploiting moving objects and the generality and feasibility of the proposed MR-SLAT algorithm.
机译:事实证明,协作式本地化可以有效地胜过单机器人本地化。大多数最先进的多机器人定位系统要么将移动对象视为离群值,要么将移动对象与定位分开进行跟踪,但我们认为将移动对象扩展到定位估计中可以进一步增强定位性能,这确实是解决几个本地化挑战(例如地图特征不足,没有地图特征和对称地图)的关键。本文提出了一种基于扩展卡尔曼滤波器的多机器人同时定位与跟踪算法,并将多假设跟踪(MHT)集成到了MR-SLAT中以解决具有挑战性的数据关联问题。在两种情况下验证了该方法的可行性:在RoboCup场景中使用了配备有摄像头和WiFi的NAO类人机器人,在交通场景中使用了具有激光扫描仪和专用短程通信(DSRC)的机器人车辆。具有地面真实性的实验表明,在具有挑战性的场景中,MR-SLAT通过利用移动物体,优于单机器人定位和协作定位。大量的实验和仿真结果证明了利用运动物体的有效性以及所提出的MR-SLAT算法的普遍性和可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号