首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >Adaptive Iterative Learning Control for High-Speed Trains With Unknown Speed Delays and Input Saturations
【24h】

Adaptive Iterative Learning Control for High-Speed Trains With Unknown Speed Delays and Input Saturations

机译:具有未知速度延迟和输入饱和度的高速列车的自适应迭代学习控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an adaptive iterative learning control (AILC) strategy for high-speed trains with unknown speed delays and control input saturations is designed to address speed trajectory tracking problem. The train motion dynamics containing nonlinearities and parametric uncertainties are formulated as a nonlinearly parameterized system. Instead of estimation or modeling of train delays, an unknown time-varying delay term is integrated into the speed on delay analysis by means of Lyapunov–Krasovskii function. Through rigorous analysis, it is confirmed that the proposed AILC mechanism can guarantee convergence of train speed to the desired profile during operations repeatedly. Case studies with numerical simulations further verify the effectiveness of the proposed approach.
机译:本文针对具有未知速度延迟和控制输入饱和的高速列车,设计了一种自适应迭代学习控制(AILC)策略,以解决速度轨迹跟踪问题。包含非线性和参数不确定性的列车运动动力学公式化为非线性参数化系统。借助Lyapunov–Krasovskii函数,可以将未知的时变延迟项整合到速度分析的速度中,而不是对火车延迟进行估计或建模。通过严格的分析,证实了所提出的AILC机制可以保证列车在反复运行过程中收敛到所需的速度。数值模拟的案例研究进一步验证了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号