首页> 外文期刊>IEEE transactions on automation science and engineering >Data-Driven Approach for Fault Detection and Diagnostic in Semiconductor Manufacturing
【24h】

Data-Driven Approach for Fault Detection and Diagnostic in Semiconductor Manufacturing

机译:半导体制造中故障检测与诊断的数据驱动方法

获取原文
获取原文并翻译 | 示例

摘要

Fault detection and classification (FDC) is important for semiconductor manufacturing to monitor equipment's condition and examine the potential cause of the fault. Each equipment in the semiconductor manufacturing process is often accompanied by a large amount of sensor readings, also called status variable identification (SVID). Identifying the key SVIDs accurately can make it easier for engineers to monitor the process and maintain the stability of the process and wafer productive yields. This article proposes using the random forests algorithm to analyze the importance of SVIDs of equipment sensors, automatically filters the key SVID by using k-means, and integrates various machine learning methods to verify the key SVIDs and identify key processing time and steps. Upon the key parameters are identified, the key processing time and steps are investigated subsequently. The ensemble models constructed on k-nearest neighbors (kNNs) and naive Bayes classifiers are presented for classifying wafers as normal or abnormal. Data visualization of multidimensional key SVIDs is performed by using t-distributed stochastic neighbor embedding (t-SNE) to create a graphical aid in FDC for the process engineer. An empirical study is conducted to validate the proposed data-driven framework for fault detection and diagnostic. The experimental results demonstrate that the proposed framework can detect abnormality effectively with highly imbalanced classes and also gain insightful information about the key SVIDs and corresponding key processing time and steps.Note to Practitioners-The challenges of equipment sensor data analytics in semiconductor manufacturing include building the classifier to detect wafer abnormality correctly, identification of key status variable identifications (SVIDs) and processing time and steps of abnormality, and data visualization of the abnormality in a high-dimensional feature space. This article proposes a data-driven framework for fault detection and classification (FDC) during the wafer fabrication process by incorporating several useful machine learning approaches. Experimental results demonstrate that the proposed data-driven framework can supply quality fault detection performances and provide valuable information regarding the critical SVIDs and associated key processing time for fault diagnostic. The engineers can utilize the extracted fault patterns to perform a prognosis of the aging effect on process tools or modules for health management.
机译:故障检测和分类(FDC)对于半导体制造对于监控设备的状况并检查故障的潜在原因是重要的。半导体制造过程中的每个设备通常伴随着大量的传感器读数,也称为状态变量识别(SVID)。准确地识别密钥SVID可以使工程师更容易监控过程并保持过程的稳定性和晶片生产率。本文建议使用随机林算法来分析设备传感器SVID的重要性,通过使用K-means自动过滤键SVID,并集成各种机器学习方法以验证密钥SVID并识别关键处理时间和步骤。在识别关键参数时,随后研究了密钥处理时间和步骤。在K-最近邻居(KNNS)和朴素贝叶斯分类器上构建的集合模型用于将晶片分类为正常或异常。通过使用T分布式随机邻居嵌入(T-SNE)来执行多维键SVID的数据可视化,以在FDC为过程工程师创建图形辅助工程。进行了实证研究以验证建议的数据驱动框架,用于故障检测和诊断。实验结果表明,所提出的框架可以有效地利用高度不平衡的类别来检测异常,并获得关于关键SVID的富有识别信息和对应的关键处理时间和步骤。注意到是从业者的挑战 - 半导体制造中的设备传感器数据分析的挑战包括建立分类器正确检测晶片异常,识别关键状态变量标识(SVID)和异常的处理时间和步骤,以及高维特征空间中的异常的数据可视化。本文通过结合多种有用的机器学习方法,提出了一种用于故障检测和分类(FDC)的数据驱动框架,通过结合几种有用的机器学习方法。实验结果表明,所提出的数据驱动框架可以提供质量故障检测性能,并提供有关关键SVID的有价值信息和相关的故障诊断密钥处理时间。工程师可以利用提取的故障模式,对健康管理的工艺工具或模块进行老化效果的预后。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号