首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >An Accurate Mura Defect Vision Inspection Method Using Outlier-Prejudging-Based Image Background Construction and Region-Gradient-Based Level Set
【24h】

An Accurate Mura Defect Vision Inspection Method Using Outlier-Prejudging-Based Image Background Construction and Region-Gradient-Based Level Set

机译:使用基于异常预判的图像背景构造和基于区域梯度的水平集的精确Mura缺陷视觉检查方法

获取原文
获取原文并翻译 | 示例

摘要

The visual inspection of Mura defects is still a challenging task in the quality control of panel displays because of the intrinsically nonuniform brightness and blurry contours of these defects. The current methods cannot detect all Mura defect types simultaneously, especially small defects. In this paper, we introduce an accurate Mura defect visual inspection (AMVI) method for the fast simultaneous inspection of various Mura defect types. The method consists of two parts: an outlier-prejudging-based image background construction (OPBC) algorithm is proposed to quickly reduce the influence of image backgrounds with uneven brightness and to coarsely estimate the candidate regions of Mura defects. Then, a novel region-gradient-based level set (RGLS) algorithm is applied only to these candidate regions to quickly and accurately segment the contours of the Mura defects. To demonstrate the performance of AMVI, several experiments are conducted to compare AMVI with other popular visual inspection methods are conducted. The experimental results show that AMVI tends to achieve better inspection performance and can quickly and accurately inspect a greater number of Mura defect types, especially for small and large Mura defects with uneven backlight.
机译:在面板显示器的质量控制中,目视检查Mura缺陷仍然是一项艰巨的任务,因为这些缺陷本质上是亮度不均匀且轮廓模糊。当前的方法不能同时检测所有的Mura缺陷类型,尤其是小的缺陷。在本文中,我们介绍了一种精确的Mura缺陷外观检查(AMVI)方法,用于快速同时检查各种Mura缺陷类型。该方法由两部分组成:提出了一种基于异常预测的图像背景构造(OPBC)算法,以快速降低亮度不均匀的图像背景的影响并粗略估计Mura缺陷的候选区域。然后,一种新颖的基于区域梯度的水平集(RGLS)算法仅应用于这些候选区域,以快速,准确地分割Mura缺陷的轮廓。为了证明AMVI的性能,进行了一些实验以将AMVI与其他流行的视觉检查方法进行比较。实验结果表明,AMVI趋于获得更好的检测性能,并且可以快速而准确地检测出更多的Mura缺陷类型,尤其是对于背光不均匀的大小Mura缺陷。

著录项

  • 来源
  • 作者单位

    State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China;

    State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China;

    State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China;

    State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Inspection; Image segmentation; Visualization; Image reconstruction; Level set; Reconstruction algorithms; Task analysis;

    机译:检测;图像分割;可视化;图像重建;水平集;重建算法;任务分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号