首页> 外文期刊>IEEE Transactions on Automatic Control >Optimal state estimation for stochastic systems: an information theoretic approach
【24h】

Optimal state estimation for stochastic systems: an information theoretic approach

机译:随机系统的最优状态估计:一种信息理论方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we examine the problem of optimal state estimation or filtering in stochastic systems using an approach based on information theoretic measures. In this setting, the traditional minimum mean-square measure is compared with information theoretic measures, Kalman filtering theory is reexamined, and some new interpretations are offered. We show that for a linear Gaussian system, the Kalman filter is the optimal filter not only for the mean-square error measure, but for several information theoretic measures which are introduced in this work. For nonlinear systems, these same measures generally are in conflict with each other, and the feedback control policy has a dual role with regard to regulation and estimation. For linear stochastic systems with general noise processes, a lower bound on the achievable mutual information between the estimation error and the observation are derived. The properties of an optimal (probing) control law and the associated optimal filter, which achieve this lower bound, and their relationships are investigated. It is shown that for a linear stochastic system with an affine linear filter for the homogeneous system, under some reachability and observability conditions, zero mutual information between estimation error and observations can be achieved only when the system is Gaussian.
机译:在本文中,我们使用基于信息理论测度的方法研究了随机系统中的最佳状态估计或滤波问题。在这种情况下,将传统的最小均方测度与信息理论测度进行了比较,重新审视了卡尔曼滤波理论,并提供了一些新的解释。我们表明,对于线性高斯系统,卡尔曼滤波器不仅是均方误差度量的最佳滤波器,而且对于本文介绍的几种信息理论度量也是最佳滤波器。对于非线性系统,这些相同的度量通常相互冲突,并且反馈控制策略在调节和估计方面具有双重作用。对于具有一般噪声过程的线性随机系统,得出了估计误差与观测值之间可达到的互信息的下界。研究了达到该下限的最优(探测)控制律和相关的最优滤波器的性质,以及它们之间的关系。结果表明,对于具有均质系统仿射线性滤波器的线性随机系统,在某些可达性和可观测性条件下,只有当系统为高斯时,估计误差和观测值之间的零互信息才能实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号