首页> 外文期刊>IEEE transactions on circuits and systems. II, Express briefs >Optimal and self-tuning State estimation for singular stochastic systems: a polynomial equation approach
【24h】

Optimal and self-tuning State estimation for singular stochastic systems: a polynomial equation approach

机译:奇异随机系统的最优和自整定状态估计:多项式方程方法

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with the optimal steady-state estimation for singular stochastic discrete-time systems using a polynomial equation approach. The key to the optimal estimation is the calculation of an optimal estimator gain matrix. The main contribution of the paper is the derivation of a simple method for computing the gain matrix. Our method involves solving one simple polynomial equation which is derived from the uniqueness of the autoregressive moving average (ARMA) innovation model. The approach covers prediction, filtering, and smoothing problems. Further, when the noise statistics of the model are not available, self-tuning estimation is performed by identifying one ARMA innovation model.
机译:本文关注的是采用多项式方程方法的奇异随机离散时间系统的最优稳态估计。最佳估计的关键是最佳估计器增益矩阵的计算。本文的主要贡献是推导了一种简单的方法来计算增益矩阵。我们的方法涉及求解一个简单的多项式方程,该方程是从自回归移动平均值(ARMA)创新模型的唯一性得出的。该方法涵盖了预测,过滤和平滑问题。此外,当模型的噪声统计数据不可用时,可通过识别一个ARMA创新模型来执行自整定估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号