首页> 外文期刊>IEEE Transactions on Automatic Control >Comments on 'Optimal Control via Fourier Series of Operational Matrix of Integration'
【24h】

Comments on 'Optimal Control via Fourier Series of Operational Matrix of Integration'

机译:评论“通过傅立叶级数的积分矩阵的最优控制”

获取原文
获取原文并翻译 | 示例

摘要

In the last four decades, the orthogonal functions approach has been extensively applied to study problems like analysis, identification, and control of continuous-time dynamical systems. The success of this approach lies in the fact that it converts calculus into algebra approximately in the sense of least squares. Sine-cosine functions are a class of orthogonal functions, and they were applied to study the optimal control problem with some success. In order to have a computationally attractive method for solving the optimal control problem via sine-cosine functions, an attempt was made. In this note, we show that the Fourier series approach to the optimal control problem in a previous paper is incorrect.
机译:在过去的四十年中,正交函数方法已广泛应用于研究问题,例如分析,识别和控制连续时间动力系统。这种方法的成功在于,它可以将微积分近似地以最小二乘的方式转换为代数。正弦余弦函数是一类正交函数,已被用于研究最优控制问题并取得了一些成功。为了具有一种在计算上有吸引力的方法来解决通过正弦余弦函数的最佳控制问题,进行了尝试。在本说明中,我们证明了先前论文中针对最优控制问题的傅里叶级数方法是不正确的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号