首页> 外文期刊>Automatic Control, IEEE Transactions on >Dynamic Approximate Solutions of the HJ Inequality and of the HJB Equation for Input-Affine Nonlinear Systems
【24h】

Dynamic Approximate Solutions of the HJ Inequality and of the HJB Equation for Input-Affine Nonlinear Systems

机译:输入仿射非线性系统的HJ不等式和HJB方程的动态近似解

获取原文
获取原文并翻译 | 示例

摘要

The solution of most nonlinear control problems hinges upon the solvability of partial differential equations or inequalities. In particular, disturbance attenuation and optimal control problems for nonlinear systems are generally solved exploiting the solution of the so-called Hamilton–Jacobi (HJ) inequality and the Hamilton–Jacobi–Bellman (HJB) equation, respectively. An explicit closed-form solution of this inequality, or equation, may however be hard or impossible to find in practical situations. Herein we introduce a methodology to circumvent this issue for input-affine nonlinear systems proposing a dynamic, i.e., time-varying, approximate solution of the HJ inequality and of the HJB equation the construction of which does not require solving any partial differential equation or inequality. This is achieved considering the immersion of the underlying nonlinear system into an augmented system defined on an extended state-space in which a (locally) positive definite storage function, or value function, can be explicitly constructed. The result is a methodology to design a dynamic controller to achieve ${cal L}_{2}$-disturbance attenuation or approximate optimality, with asymptotic stability.
机译:大多数非线性控制问题的解决方案取决于偏微分方程或不等式的可解性。特别是,通常分别利用所谓的汉密尔顿-雅各比(HJ)不等式和汉密尔顿-雅各比-贝尔曼(HJB)方程的解来解决非线性系统的扰动衰减和最优控制问题。但是,在实际情况中可能很难或不可能找到这种不等式或方程式的显式封闭形式解决方案。本文中,我们针对输入仿射非线性系统引入了一种动态方法,即时变的HJ不等式和HJB方程的近似解,该方法的构造不需要求解任何偏微分方程或不等式,从而介绍了一种解决该问题的方法。 。考虑到将基础非线性系统浸入在扩展状态空间中定义的扩充系统中,可以实现这一目的,在该状态空间中可以明确构造(局部)正定存储函数或值函数。结果是一种设计动态控制器的方法,以实现具有渐近稳定性的$ {cal L} _ {2} $干扰衰减或近似最优。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号