首页> 外文期刊>Automatic Control, IEEE Transactions on >Observer Design for Stochastic Nonlinear Systems via Contraction-Based Incremental Stability
【24h】

Observer Design for Stochastic Nonlinear Systems via Contraction-Based Incremental Stability

机译:基于收缩的增量稳定性的随机非线性系统的观测器设计

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new design approach to nonlinear observers for Itô stochastic nonlinear systems with guaranteed stability. A stochastic contraction lemma is presented which is used to analyze incremental stability of the observer. A bound on the mean-squared distance between the trajectories of original dynamics and the observer dynamics is obtained as a function of the contraction rate and maximum noise intensity. The observer design is based on a non-unique state-dependent coefficient (SDC) form, which parametrizes the nonlinearity in an extended linear form. The observer gain synthesis algorithm, called linear matrix inequality state-dependent algebraic Riccati equation (LMI-SDARE), is presented. The LMI-SDARE uses a convex combination of multiple SDC parametrizations. An optimization problem with state-dependent linear matrix inequality (SDLMI) constraints is formulated to select the coefficients of the convex combination for maximizing the convergence rate and robustness against disturbances. Two variations of LMI-SDARE algorithm are also proposed. One of them named convex state-dependent Riccati equation (CSDRE) uses a chosen convex combination of multiple SDC matrices; and the other named Fixed-SDARE uses constant SDC matrices that are pre-computed by using conservative bounds of the system states while using constant coefficients of the convex combination pre-computed by a convex LMI optimization problem. A connection between contraction analysis and L gain of the nonlinear system is established in the presence of noise and disturbances. Results of simulation show superiority of the LMI-SDARE algorithm to the extended Kalman filter (EKF) and state-dependent differential Riccati equation (SDDRE) filter.
机译:本文提出了一种具有保证稳定性的,针对伊藤随机非线性系统的非线性观测器的新设计方法。提出了随机收缩引理,用于分析观察者的增量稳定性。根据收缩率和最大噪声强度,获得原始动力学轨迹和观察者动力学轨迹之间的均方距离的界限。观察者设计基于非唯一的状态相关系数(SDC)形式,该形式以扩展线性形式参数化非线性。提出了一种观测器增益综合算法,称为线性矩阵不等式依赖状态的代数Riccati方程(LMI-SDARE)。 LMI-SDARE使用多个SDC参数化的凸组合。提出了一个具有状态相关线性矩阵不等式(SDLMI)约束的优化问题,以选择凸组合的系数,以最大化收敛速度和抗扰动性。还提出了LMI-SDARE算法的两个变体。其中一个名为凸状态依赖的Riccati方程(CSDRE)使用多个SDC矩阵的选定凸组合。另一个名为Fixed-SDARE,它使用通过使用系统状态的保守范围进行预计算的常量SDC矩阵,同时使用通过凸LMI优化问题进行预计算的凸组合的常量系数。在存在噪声和干扰的情况下,非线性系统的收缩分析与L增益之间建立了联系。仿真结果表明,LMI-SDARE算法优于扩展的卡尔曼滤波器(EKF)和状态相关的微分Riccati方程(SDDRE)滤波器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号