首页> 外文期刊>IEEE Transactions on Automatic Control >A Computationally Efficient Robust Model Predictive Control Framework for Uncertain Nonlinear Systems
【24h】

A Computationally Efficient Robust Model Predictive Control Framework for Uncertain Nonlinear Systems

机译:不确定非线性系统的计算高效的鲁棒模型预测控制框架

获取原文
获取原文并翻译 | 示例

摘要

In this article, we present a nonlinear robust model predictive control (MPC) framework for general (state and input dependent) disturbances. This approach uses an online constructed tube in order to tighten the nominal (state and input) constraints. To facilitate an efficient online implementation, the shape of the tube is based on an offline computed incremental Lyapunov function with a corresponding (nonlinear) incrementally stabilizing feedback. Crucially, the online optimization only implicitly includes these nonlinear functions in terms of scalar bounds, which enables an efficient implementation. Furthermore, to account for an efficient evaluation of the worst case disturbance, a simple function is constructed offline that upper bounds the possible disturbance realizations in a neighborhood of a given point of the open-loop trajectory. The resulting MPC scheme ensures robust constraint satisfaction and practical asymptotic stability with a moderate increase in the online computational demand compared to a nominal MPC. We demonstrate the applicability of the proposed framework in comparison to state-of-the-art robust MPC approaches with a nonlinear benchmark example.
机译:在本文中,我们为一般(状态和输入相关)干扰提供了一个非线性鲁棒模型预测控制(MPC)框架。这种方法使用在线构造的管以拧紧标称(状态和输入)约束。为了便于高效的在线实现,管的形状基于离线计算的增量Lyapunov函数,其具有相应的(非线性)递增的反馈。至关重要的是,在线优化仅在标量界限内隐式地包括这些非线性函数,这使得能够有效实现。此外,为了考虑对最坏情况干扰的有效评估,脱机的简单功能是在开线轨迹的给定点的邻域中的可能干扰的实现的脱机。由此产生的MPC方案确保了与标称MPC相比,在线计算需求的中等增加,确保了稳健的约束满足和实际渐近稳定性。我们展示了拟议的框架的适用性与具有非线性基准示例的最先进的强大的MPC方法相比之下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号