首页> 外文期刊>Automatic Control, IEEE Transactions on >Linear Optimal Unbiased Filter for Time-Variant Systems Without Apriori Information on Initial Conditions
【24h】

Linear Optimal Unbiased Filter for Time-Variant Systems Without Apriori Information on Initial Conditions

机译:初始条件下无先验信息的时变系统线性最优无偏滤波器

获取原文
获取原文并翻译 | 示例

摘要

In this technical note, an optimal unbiased filter (OUF) is derived for time-variant systems to relax the initial condition assumption in Kalman filter (KF). By minimizing the mean square errors subject to the unbiasedness condition a solution is derived in a batch computation form first. To facilitate the on-line application, a recursive realization is further developed. The effect of removing the initial condition assumption on the estimation performance is analysed, and we show that the proposed algorithm converges to the KF asymptotically. Two-state harmonic model and four-state moving target tracking model are employed to demonstrate that the OUF can improve transient estimation performance significantly and can be used in place of the KF when the apriori information about the initial state values is not available.
机译:在本技术说明中,为时变系统导出了最佳无偏滤波器(OUF),以放松卡尔曼滤波器(KF)中的初始条件假设。通过最小化无偏条件下的均方误差,可以首先以批处理形式导出解决方案。为了方便在线应用,进一步开发了递归实现。分析了去除初始条件假设对估计性能的影响,我们证明了该算法渐近收敛于KF。利用二态谐波模型和四态运动目标跟踪模型证明了OUF可以显着改善瞬态估计性能,并且在无法获得有关初始状态值的先验信息时可以代替KF来使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号