首页> 外文期刊>Automatic Control, IEEE Transactions on >A Systematic Process for Evaluating Structured Perfect Bayesian Equilibria in Dynamic Games With Asymmetric Information
【24h】

A Systematic Process for Evaluating Structured Perfect Bayesian Equilibria in Dynamic Games With Asymmetric Information

机译:具有不对称信息的动态博弈中结构化完美贝叶斯均衡评估的系统过程

获取原文
获取原文并翻译 | 示例

摘要

We consider both finite-horizon and infinite-horizon versions of a dynamic game with$N$selfish players who observe their types privately and take actions that are publicly observed. Players’ types evolve as conditionally independent Markov processes, conditioned on their current actions. Their actions and types jointly determine their instantaneous rewards. In dynamic games with asymmetric information, a widely used concept of equilibrium is perfect Bayesian equilibrium (PBE) which consists of a strategy and belief pair that simultaneously satisfy sequential rationality and belief consistency. In general, there does not exist a universal algorithm that decouples the interdependence of strategies and beliefs over time in calculating PBE. In this paper, for the finite-horizon game with independent types, we develop a two-step backward–forward recursive algorithm that sequentially decomposes the problem (w.r.t. time) to obtain a subset of PBEs, which we refer to asstructured Bayesian perfect equilibria(SPBE). In such equilibria, a player's strategy depends on his/her history only through a common public belief and its current private type. The backward recursive part of this algorithm defines an equilibrium generating function. Each period in the backward recursion involves solving a fixed-point equation on the space of probability simplexes for every possible belief on types. Using this function, equilibrium strategies and beliefs are generated through a forward recursion. We then extend this methodology to the infinite-horizon model, where we propose a time-invariant single-shot fixed-point equation, which in conjunction with a forward recursive step, generates the SPBE. Sufficient conditions for the existence of SPBE are provided. With our proposed method, we find equilibria that exhibitsignalingbehavior. This is illustrated with the help of a concrete public goods example.
机译:我们考虑具有 n $ N $ 自私的玩家私下打字并采取公开观察到的行动。玩家的类型会根据他们当前的动作以条件独立的马尔可夫过程演变。他们的行为和类型共同决定了他们的瞬时奖励。在具有不对称信息的动态博弈中,广泛使用的均衡概念是完美贝叶斯均衡(PBE),它由同时满足顺序合理性和信念一致性的策略和信念对组成。通常,在计算PBE时,不存在将策略和信念的相互依赖性随时间去耦的通用算法。在本文中,对于具有独立类型的有限水平博弈,我们开发了一种两步向后向前递归算法,该算法顺序分解问题(耗时)以获得PBE的子集,我们称之为 n <斜体xmlns:mml = “ http://www.w3.org/1998/Math/MathML ” xmlns:xlink = “ http://www.w3.org/1999/xlink ”>结构化贝叶斯完美均衡< /斜体> n(SPBE)。在这种均衡中,玩家的策略仅取决于共同的公共信仰及其当前的私人类型,取决于他/她的历史。该算法的后向递归部分定义了一个平衡生成函数。向后递归的每个周期都涉及针对每种可能的类型信念在概率单纯形空间上求解一个定点方程。使用此功能,可以通过前向递归生成均衡策略和信念。然后,我们将此方法扩展到无限地平线模型,在此模型中,我们提出了时不变单发定点方程,该方程与正向递归步骤一起生成SPBE。提供了存在SPBE的充分条件。通过我们提出的方法,我们发现表现出 n <斜体xmlns:mml = “ http://www.w3.org/1998/Math/MathML ” xmlns:xlink = “ http://www.w3 .org / 1999 / xlink “>信令 n行为。借助具体的公共物品示例对此进行了说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号