首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Determined Blind Source Separation Unifying Independent Vector Analysis and Nonnegative Matrix Factorization
【24h】

Determined Blind Source Separation Unifying Independent Vector Analysis and Nonnegative Matrix Factorization

机译:确定的盲源分离统一独立矢量分析和非负矩阵分解

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the determined blind source separation problem and proposes a new effective method unifying independent vector analysis (IVA) and nonnegative matrix factorization (NMF). IVA is a state-of-the-art technique that utilizes the statistical independence between sources in a mixture signal, and an efficient optimization scheme has been proposed for IVA. However, since the source model in IVA is based on a spherical multivariate distribution, IVA cannot utilize specific spectral structures such as the harmonic structures of pitched instrumental sounds. To solve this problem, we introduce NMF decomposition as the source model in IVA to capture the spectral structures. The formulation of the proposed method is derived from conventional multichannel NMF (MNMF), which reveals the relationship between MNMF and IVA. The proposed method can be optimized by the update rules of IVA and single-channel NMF. Experimental results show the efficacy of the proposed method compared with IVA and MNMF in terms of separation accuracy and convergence speed.
机译:本文解决了确定的盲源分离问题,并提出了一种新的有效方法,将独立矢量分析(IVA)和非负矩阵分解(NMF)相结合。 IVA是利用混合信号中源之间的统计独立性的最新技术,并且已经为IVA提出了一种有效的优化方案。但是,由于IVA中的源模型基于球面多元分布,因此IVA无法利用特定的频谱结构,例如音高的乐器声音的谐波结构。为了解决这个问题,我们将NMF分解作为IVA中的源模型来捕获光谱结构。所提出的方法的公式是从传统的多通道NMF(MNMF)派生而来的,它揭示了MNMF与IVA之间的关系。该方法可以通过IVA和单通道NMF的更新规则进行优化。实验结果表明,与IVA和MNMF相比,该方法在分离精度和收敛速度方面具有较高的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号