首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Independent Low-Rank Matrix Analysis Based on Time-Variant Sub-Gaussian Source Model for Determined Blind Source Separation
【24h】

Independent Low-Rank Matrix Analysis Based on Time-Variant Sub-Gaussian Source Model for Determined Blind Source Separation

机译:基于时变子高斯源模型的独立低秩矩阵分析,用于确定盲源分离

获取原文
获取原文并翻译 | 示例

摘要

Independent low-rank matrix analysis (ILRMA) is a fast and stable method of blind audio source separation. Conventional ILRMAs assume time-variant (super-)Gaussian source models, which can only represent signals that follow a super-Gaussian distribution. In this article, we focus on ILRMA based on a generalized Gaussian distribution (GGD-ILRMA) and propose a new type of GGD-ILRMA that adopts a time-variant sub-Gaussian distribution for the source model. We propose a new update scheme called generalized iterative projection for homogeneous source models (GIP-HSM) and obtain a convergence-guaranteed update rule for demixing spatial parameters by combining the GIP-HSM scheme and the majorization-minimization (MM) algorithm. Furthermore, a new extension of the MM algorithm is proposed for the convergence acceleration by applying the majorization-equalization algorithm to a multivariate case. In the experimental evaluation, we show the versatility of the proposed method, i.e., the proposed time-variant sub-Gaussian source model can be applied to various types of source signal.
机译:独立的低级矩阵分析(ILRMA)是一种快速稳定的盲音源分离方法。常规ilrmas采用时间变量(超级)高斯源模型,只能代表遵循超高斯分布的信号。在本文中,我们专注于基于广义高斯分布(GGD-Ilrma)的ILRMA,并提出了一种新型的GGD-Ilrma,用于采用源模型的时变子高斯分布。我们提出了一种新的更新方案,称为均匀源模型(GIP-HSM)的广义迭代投影,并通过组合GIP-HSM方案和多种化最小化(MM)算法来获得用于解析空间参数的收敛保证更新规则。此外,提出了通过将多种化均衡算法应用于多变量的情况来提出MM算法的新扩展。在实验评估中,我们表明所提出的方法的多功能性,即,所提出的时变子高斯源模型可以应用于各种类型的源信号。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号