首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Deep Learning Backend for Single and Multisession i-Vector Speaker Recognition
【24h】

Deep Learning Backend for Single and Multisession i-Vector Speaker Recognition

机译:用于单会话和多会话i-Vector说话人识别的深度学习后端

获取原文
获取原文并翻译 | 示例

摘要

The lack of labeled background data makes a big performance gap between cosine and Probabilistic Linear Discriminant Analysis (PLDA) scoring baseline techniques for i-vectors in speaker recognition. Although there are some unsupervised clustering techniques to estimate the labels, they cannot accurately predict the true labels and they also assume that there are several samples from the same speaker in the background data that could not be true in reality. In this paper, the authors make use of Deep Learning (DL) to fill this performance gap given unlabeled background data. To this goal, the authors have proposed an impostor selection algorithm and a universal model adaptation process in a hybrid system based on deep belief networks and deep neural networks to discriminatively model each target speaker. In order to have more insight into the behavior of DL techniques in both single- and multisession speaker enrollment tasks, some experiments have been carried out in this paper in both scenarios. Experiments on National Institute of Standards and Technology 2014 i-vector challenge show that 46% of this performance gap, in terms of minimum of the decision cost function, is filled by the proposed DL-based system. Furthermore, the score combination of the proposed DL-based system and PLDA with estimated labels covers 79% of this gap.
机译:缺少标记的背景数据使得说话人识别中i向量的余弦和概率线性判别分析(PLDA)评分基线技术之间存在很大的性能差距。尽管存在一些无监督的聚类技术来估计标签,但它们无法准确预测真实标签,而且还假设背景数据中有来自同一说话人的多个样本在现实中可能并非真实。在本文中,作者在没有标签背景数据的情况下利用深度学习(DL)来弥补这一性能差距。为此,作者提出了一种混合动力系统中的冒名顶替者选择算法和通用模型自适应过程,该混合系统基于深度信念网络和深度神经网络来区分每个目标说话者。为了更深入地了解DL技术在单会话和多会话演讲者注册任务中的行为,本文在这两种情况下均进行了一些实验。美国国家标准技术研究院2014年i-vector挑战实验表明,就性能而言,就决策成本函数的最小值而言,46%的差距已由提议的基于DL的系统填补。此外,所提出的基于DL的系统和PLDA与估计标签的得分组合弥补了这一差距的79%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号