首页> 外文期刊>IEEE transactions on audio, speech and language processing >A Study of Variable-Parameter Gaussian Mixture Hidden Markov Modeling for Noisy Speech Recognition
【24h】

A Study of Variable-Parameter Gaussian Mixture Hidden Markov Modeling for Noisy Speech Recognition

机译:噪声语音识别的可变参数高斯混合隐马尔可夫模型研究

获取原文
获取原文并翻译 | 示例

摘要

To improve recognition performance in noisy environments, multicondition training is usually applied in which speech signals corrupted by a variety of noise are used in acoustic model training. Published hidden Markov modeling of speech uses multiple Gaussian distributions to cover the spread of the speech distribution caused by noise, which distracts the modeling of speech event itself and possibly sacrifices the performance on clean speech. In this paper, we propose a novel approach which extends the conventional Gaussian mixture hidden Markov model (GMHMM) by modeling state emission parameters (mean and variance) as a polynomial function of a continuous environment-dependent variable. At the recognition time, a set of HMMs specific to the given value of the environment variable is instantiated and used for recognition. The maximum-likelihood (ML) estimation of the polynomial functions of the proposed variable-parameter GMHMM is given within the expectation-maximization (EM) framework. Experiments on the Aurora 2 database show significant improvements of the variable-parameter Gaussian mixture HMMs compared to the conventional GMHMMs
机译:为了提高在嘈杂环境中的识别性能,通常采用多条件训练,其中在声学模型训练中使用受各种噪声破坏的语音信号。已发布的隐式语音马尔可夫建模使用多个高斯分布来覆盖由噪声引起的语音分布的扩散,这分散了语音事件本身的建模,并可能牺牲了干净语音的性能。在本文中,我们提出了一种新颖的方法,该方法通过将状态发射参数(均值和方差)建模为与环境有关的连续变量的多项式函数,从而扩展了常规的高斯混合隐马尔可夫模型(GMHMM)。在识别时,实例化一组特定于环境变量给定值的HMM,并将其用于识别。在期望最大化(EM)框架内,给出了所提出的可变参数GMHMM多项式函数的最大似然(ML)估计。在Aurora 2数据库上进行的实验表明,与常规GMHMM相比,可变参数高斯混合HMM有了显着改进

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号