首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Cross-Lingual Automatic Speech Recognition Using Tandem Features
【24h】

Cross-Lingual Automatic Speech Recognition Using Tandem Features

机译:使用串联功能的跨语言自动语音识别

获取原文
获取原文并翻译 | 示例

摘要

Automatic speech recognition depends on large amounts of transcribed speech recordings in order to estimate the parameters of the acoustic model. Recording such large speech corpora is time-consuming and expensive; as a result, sufficient quantities of data exist only for a handful of languages—there are many more languages for which little or no data exist. Given that there are acoustic similarities between speech in different languages, it may be fruitful to use data from a well-resourced source language to estimate the acoustic models for a recognizer in a poorly-resourced target language. Previous approaches to this task have often involved making assumptions about shared phonetic inventories between the languages. Unfortunately pairs of languages do not generally share a common phonetic inventory. We propose an indirect way of transferring information from a source language acoustic model to a target language acoustic model without having to make any assumptions about the phonetic inventory overlap. To do this, we employ tandem features, in which class-posteriors from a separate classifier are decorrelated and appended to conventional acoustic features. Tandem features have the advantage that the language of the speech data used to train the classifier need not be the same as the target language to be recognized. This is because the class-posteriors are not used directly, so do not have to be over any particular set of classes. We demonstrate the use of tandem features in cross-lingual settings, including training on one or several source languages. We also examine factors which may predict a priori how much relative improvement will be brought about by using such tandem features, for a given source and target pair. In addition to conventional phoneme class-posteriors, we also investigate whether articulatory features (AFs)—a multi-stream, discrete, multi-valued labeling of speech—can be used instead. This is motivated by an assumption - hat AFs are less language-specific than a phoneme set.
机译:自动语音识别取决于大量转录的语音记录,以便估计声学模型的参数。录制如此大的语音语料库既耗时又昂贵。结果,仅对于少数几种语言就存在足够数量的数据-还有更多种语言,这些语言很少或根本没有数据。假设不同语言的语音之间存在声学相似性,那么使用来自资源丰富的源语言的数据来估计资源匮乏的目标语言中的识别器的声学模型可能会富有成果。用于此任务的先前方法通常涉及对语言之间共享的语音清单进行假设。不幸的是,成对的语言通常不会共享相同的语音清单。我们提出了一种间接的方式,可以将信息从源语言声学模型转移到目标语言声学模型,而不必对语音库进行任何假设重叠。为此,我们采用了串联特征,其中来自单独分类器的类后验是去相关的,并附加到常规声学特征上。串联特征的优点在于,用于训练分类器的语音数据的语言不必与要识别的目标语言相同。这是因为不直接使用class-postteriors,因此不必遍历任何特定的class集。我们演示了在跨语言环境中使用串联功能的情况,包括对一种或几种源语言的培训。对于给定的源和目标对,我们还研究了可以预测先验因素的因素,这些因素可通过使用此类串联特性带来多少相对改善。除了常规的音素类后验之外,我们还研究是否可以代替使用发音特征(AF)(语音的多流,离散,多值标记)。这是由一个假设引起的-帽子AF的语言特定性不如音素组。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号